Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} - 6 x^{17} - 10 x^{16} + 36 x^{15} - 57 x^{14} + 54 x^{13} - 23 x^{12} + \cdots + 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[4, 8]$ |
| |
| Discriminant: |
\(84663181407790756265984\)
\(\medspace = 2^{30}\cdot 137^{3}\cdot 313^{3}\)
|
| |
| Root discriminant: | \(14.01\) |
| |
| Galois root discriminant: | $2^{3/2}137^{1/2}313^{1/2}\approx 585.702996406882$ | ||
| Ramified primes: |
\(2\), \(137\), \(313\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{42881}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2290837327499}a^{19}-\frac{691020715792}{2290837327499}a^{18}+\frac{543393049253}{2290837327499}a^{17}+\frac{224302176205}{2290837327499}a^{16}-\frac{978775788729}{2290837327499}a^{15}-\frac{1037800030453}{2290837327499}a^{14}+\frac{204465148448}{2290837327499}a^{13}+\frac{288103871028}{2290837327499}a^{12}-\frac{1033338056862}{2290837327499}a^{11}-\frac{172381397868}{2290837327499}a^{10}-\frac{1002220843699}{2290837327499}a^{9}-\frac{669986951846}{2290837327499}a^{8}+\frac{1066759142472}{2290837327499}a^{7}+\frac{561636375525}{2290837327499}a^{6}+\frac{866242039442}{2290837327499}a^{5}+\frac{598128707524}{2290837327499}a^{4}+\frac{74298095009}{2290837327499}a^{3}-\frac{7644756979}{327262475357}a^{2}-\frac{591037659319}{2290837327499}a-\frac{521374863133}{2290837327499}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{19}-4a^{18}+8a^{17}-6a^{16}-10a^{15}+36a^{14}-57a^{13}+54a^{12}-23a^{11}-18a^{10}+26a^{9}+20a^{8}-90a^{7}+128a^{6}-98a^{5}+24a^{4}+32a^{3}-36a^{2}+19a-6$, $\frac{1574763040527}{2290837327499}a^{19}-\frac{6291102354122}{2290837327499}a^{18}+\frac{12587842643191}{2290837327499}a^{17}-\frac{9420431206918}{2290837327499}a^{16}-\frac{15968063194600}{2290837327499}a^{15}+\frac{57077499739786}{2290837327499}a^{14}-\frac{90219493039230}{2290837327499}a^{13}+\frac{84382014024523}{2290837327499}a^{12}-\frac{34084459878814}{2290837327499}a^{11}-\frac{31552400109228}{2290837327499}a^{10}+\frac{44141630486068}{2290837327499}a^{9}+\frac{30777582455428}{2290837327499}a^{8}-\frac{142904460620506}{2290837327499}a^{7}+\frac{203322173311115}{2290837327499}a^{6}-\frac{152203304440571}{2290837327499}a^{5}+\frac{33062846496649}{2290837327499}a^{4}+\frac{57170371267440}{2290837327499}a^{3}-\frac{8724990869381}{327262475357}a^{2}+\frac{29229127574735}{2290837327499}a-\frac{6783267485810}{2290837327499}$, $\frac{1002739013629}{2290837327499}a^{19}-\frac{3604354348605}{2290837327499}a^{18}+\frac{6446240867452}{2290837327499}a^{17}-\frac{3194540985469}{2290837327499}a^{16}-\frac{11455569265978}{2290837327499}a^{15}+\frac{30834746646377}{2290837327499}a^{14}-\frac{43166724002329}{2290837327499}a^{13}+\frac{35249773527041}{2290837327499}a^{12}-\frac{8603626059060}{2290837327499}a^{11}-\frac{19376927104272}{2290837327499}a^{10}+\frac{14684337175409}{2290837327499}a^{9}+\frac{29057724130212}{2290837327499}a^{8}-\frac{77423695926550}{2290837327499}a^{7}+\frac{93955578957096}{2290837327499}a^{6}-\frac{58192883847208}{2290837327499}a^{5}+\frac{1908962234691}{2290837327499}a^{4}+\frac{27361436397926}{2290837327499}a^{3}-\frac{2583364320215}{327262475357}a^{2}+\frac{9722691600364}{2290837327499}a-\frac{3172363303110}{2290837327499}$, $\frac{140858965875}{2290837327499}a^{19}+\frac{491369812208}{2290837327499}a^{18}-\frac{1864803996233}{2290837327499}a^{17}+\frac{3594859092695}{2290837327499}a^{16}-\frac{1084396479102}{2290837327499}a^{15}-\frac{7430472631651}{2290837327499}a^{14}+\frac{15529101421496}{2290837327499}a^{13}-\frac{19105937867165}{2290837327499}a^{12}+\frac{10443220790721}{2290837327499}a^{11}+\frac{3711368498595}{2290837327499}a^{10}-\frac{15992829124479}{2290837327499}a^{9}+\frac{4685460126169}{2290837327499}a^{8}+\frac{20567773290648}{2290837327499}a^{7}-\frac{39635746097887}{2290837327499}a^{6}+\frac{37594341852236}{2290837327499}a^{5}-\frac{9270914183898}{2290837327499}a^{4}-\frac{14335895502141}{2290837327499}a^{3}+\frac{2269170086618}{327262475357}a^{2}-\frac{1987840982473}{2290837327499}a+\frac{2776399940079}{2290837327499}$, $\frac{52499695003}{327262475357}a^{19}-\frac{365377527858}{327262475357}a^{18}+\frac{942882606104}{327262475357}a^{17}-\frac{1185417250232}{327262475357}a^{16}-\frac{286002705238}{327262475357}a^{15}+\frac{3838213039772}{327262475357}a^{14}-\frac{7441305409010}{327262475357}a^{13}+\frac{8374026310500}{327262475357}a^{12}-\frac{4871066449352}{327262475357}a^{11}-\frac{1265533998939}{327262475357}a^{10}+\frac{5087692437916}{327262475357}a^{9}-\frac{684052922106}{327262475357}a^{8}-\frac{9781126569747}{327262475357}a^{7}+\frac{17876593317879}{327262475357}a^{6}-\frac{16637847675413}{327262475357}a^{5}+\frac{6086728741400}{327262475357}a^{4}+\frac{4217620243863}{327262475357}a^{3}-\frac{6852410531066}{327262475357}a^{2}+\frac{3062093909117}{327262475357}a-\frac{844602069294}{327262475357}$, $\frac{2624076468791}{2290837327499}a^{19}-\frac{7367846637614}{2290837327499}a^{18}+\frac{10295110367785}{2290837327499}a^{17}+\frac{2955733269169}{2290837327499}a^{16}-\frac{33756768516594}{2290837327499}a^{15}+\frac{58147648350494}{2290837327499}a^{14}-\frac{57801562030148}{2290837327499}a^{13}+\frac{18016720223349}{2290837327499}a^{12}+\frac{33476877815914}{2290837327499}a^{11}-\frac{60283074035297}{2290837327499}a^{10}+\frac{845587786752}{2290837327499}a^{9}+\frac{95135821682403}{2290837327499}a^{8}-\frac{146023007088208}{2290837327499}a^{7}+\frac{104528281676449}{2290837327499}a^{6}+\frac{5842016058672}{2290837327499}a^{5}-\frac{82488676054031}{2290837327499}a^{4}+\frac{64243133959730}{2290837327499}a^{3}+\frac{188669299179}{327262475357}a^{2}-\frac{6933744538037}{2290837327499}a+\frac{5867116088619}{2290837327499}$, $\frac{208626075410}{2290837327499}a^{19}+\frac{595464203484}{2290837327499}a^{18}-\frac{2618144835132}{2290837327499}a^{17}+\frac{5379841856236}{2290837327499}a^{16}-\frac{2324865252383}{2290837327499}a^{15}-\frac{9875138702046}{2290837327499}a^{14}+\frac{22964367994397}{2290837327499}a^{13}-\frac{29007611669340}{2290837327499}a^{12}+\frac{17621757576252}{2290837327499}a^{11}+\frac{3897226951334}{2290837327499}a^{10}-\frac{24344841041317}{2290837327499}a^{9}+\frac{10447983659315}{2290837327499}a^{8}+\frac{27490201515092}{2290837327499}a^{7}-\frac{59848755012686}{2290837327499}a^{6}+\frac{57152409974721}{2290837327499}a^{5}-\frac{19044309721585}{2290837327499}a^{4}-\frac{21558917994356}{2290837327499}a^{3}+\frac{3679531426835}{327262475357}a^{2}-\frac{5644357696580}{2290837327499}a+\frac{1285748318429}{2290837327499}$, $\frac{55085033367}{327262475357}a^{19}-\frac{247200274910}{327262475357}a^{18}+\frac{530035941290}{327262475357}a^{17}-\frac{443331887602}{327262475357}a^{16}-\frac{563128422234}{327262475357}a^{15}+\frac{2382592950003}{327262475357}a^{14}-\frac{3805251779913}{327262475357}a^{13}+\frac{3667897411137}{327262475357}a^{12}-\frac{1561038396626}{327262475357}a^{11}-\frac{1452499218249}{327262475357}a^{10}+\frac{2140135412425}{327262475357}a^{9}+\frac{861716664753}{327262475357}a^{8}-\frac{6065037952510}{327262475357}a^{7}+\frac{8562237464622}{327262475357}a^{6}-\frac{6655049781249}{327262475357}a^{5}+\frac{1250619104634}{327262475357}a^{4}+\frac{2947326427634}{327262475357}a^{3}-\frac{2769842595675}{327262475357}a^{2}+\frac{1451803214437}{327262475357}a-\frac{209366591614}{327262475357}$, $\frac{178050377996}{327262475357}a^{19}-\frac{609829431331}{327262475357}a^{18}+\frac{1114535912165}{327262475357}a^{17}-\frac{549296628521}{327262475357}a^{16}-\frac{1902329453938}{327262475357}a^{15}+\frac{5266612829390}{327262475357}a^{14}-\frac{7550972535009}{327262475357}a^{13}+\frac{6242174574604}{327262475357}a^{12}-\frac{1839657276507}{327262475357}a^{11}-\frac{3266549303593}{327262475357}a^{10}+\frac{2685104305450}{327262475357}a^{9}+\frac{4369313527206}{327262475357}a^{8}-\frac{13166164109311}{327262475357}a^{7}+\frac{16307730466516}{327262475357}a^{6}-\frac{10483290387964}{327262475357}a^{5}+\frac{1046792755627}{327262475357}a^{4}+\frac{4777985920748}{327262475357}a^{3}-\frac{4082786583318}{327262475357}a^{2}+\frac{2395205083298}{327262475357}a-\frac{524237375380}{327262475357}$, $\frac{4061349237986}{2290837327499}a^{19}-\frac{15251477508468}{2290837327499}a^{18}+\frac{28341411604895}{2290837327499}a^{17}-\frac{16239590092989}{2290837327499}a^{16}-\frac{46365125718036}{2290837327499}a^{15}+\frac{134671671933233}{2290837327499}a^{14}-\frac{193495237386467}{2290837327499}a^{13}+\frac{162506226124261}{2290837327499}a^{12}-\frac{43207506509519}{2290837327499}a^{11}-\frac{88820532860666}{2290837327499}a^{10}+\frac{81264362876497}{2290837327499}a^{9}+\frac{109761262129138}{2290837327499}a^{8}-\frac{339920260371234}{2290837327499}a^{7}+\frac{423566494506258}{2290837327499}a^{6}-\frac{270927577075770}{2290837327499}a^{5}+\frac{10652399901056}{2290837327499}a^{4}+\frac{137358523471138}{2290837327499}a^{3}-\frac{15173172653734}{327262475357}a^{2}+\frac{41938593859859}{2290837327499}a-\frac{11579780013876}{2290837327499}$, $\frac{2375761232688}{2290837327499}a^{19}-\frac{7773498731478}{2290837327499}a^{18}+\frac{13282502502681}{2290837327499}a^{17}-\frac{4535911326890}{2290837327499}a^{16}-\frac{26985066214367}{2290837327499}a^{15}+\frac{65413889562516}{2290837327499}a^{14}-\frac{87018538693761}{2290837327499}a^{13}+\frac{64672598117404}{2290837327499}a^{12}-\frac{8156371888395}{2290837327499}a^{11}-\frac{46099595870997}{2290837327499}a^{10}+\frac{24920471026837}{2290837327499}a^{9}+\frac{67206430249468}{2290837327499}a^{8}-\frac{163414964239169}{2290837327499}a^{7}+\frac{183274241651050}{2290837327499}a^{6}-\frac{99362156875431}{2290837327499}a^{5}-\frac{13354550444439}{2290837327499}a^{4}+\frac{59092136187762}{2290837327499}a^{3}-\frac{5188261238374}{327262475357}a^{2}+\frac{18094571013280}{2290837327499}a-\frac{3767742744688}{2290837327499}$
|
| |
| Regulator: | \( 2571.87835428 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 2571.87835428 \cdot 1}{2\cdot\sqrt{84663181407790756265984}}\cr\approx \mathstrut & 0.171763968302 \end{aligned}\]
Galois group
$S_5\wr C_2$ (as 20T540):
| A non-solvable group of order 28800 |
| The 35 conjugacy class representatives for $S_5\wr C_2$ |
| Character table for $S_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 10.2.1405124608.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.10.0.1}{10} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }^{4}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.2.15a1.9 | $x^{10} + 2 x^{7} + 6 x^{5} + x^{4} + 6 x^{2} + 7$ | $2$ | $5$ | $15$ | $C_{10}$ | $$[3]^{5}$$ |
| 2.5.2.15a1.9 | $x^{10} + 2 x^{7} + 6 x^{5} + x^{4} + 6 x^{2} + 7$ | $2$ | $5$ | $15$ | $C_{10}$ | $$[3]^{5}$$ | |
|
\(137\)
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.2.1.0a1.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 137.3.1.0a1.1 | $x^{3} + 6 x + 134$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 137.3.2.3a1.2 | $x^{6} + 12 x^{4} + 268 x^{3} + 36 x^{2} + 1608 x + 18093$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(313\)
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{313}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |