Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $540$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14,7,11,8,15,10,12)(2,13,4,17,6,18,9,19)(3,20,5,16), (2,8,4,10,5,7)(3,9,6)(11,12,20)(13,17,14)(15,19,18) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 8: $D_{4}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: None
Degree 10: None
Low degree siblings
10T43, 12T288, 20T539, 20T542, 20T544, 24T13996, 24T13997, 24T13998, 25T106, 30T1011, 36T13308, 40T14374, 40T14375, 40T14376, 40T14377, 40T14378, 40T14379, 40T14380, 40T14381Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $100$ | $2$ | $( 2,10)( 4, 7)( 5, 8)(11,20)(13,14)(15,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $225$ | $2$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)(11,20)(13,15)(14,19)(17,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1 $ | $400$ | $3$ | $( 1, 2,10)( 3, 7, 4)( 5, 9, 8)(11,20,18)(12,19,15)(13,16,14)$ |
| $ 6, 6, 3, 3, 1, 1 $ | $400$ | $6$ | $( 1, 2,10)( 3, 8, 4, 9, 7, 5)(11,13,18,14,20,16)(12,19,15)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $900$ | $4$ | $( 1, 2, 3, 7)( 4,10)( 5, 9, 6, 8)(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 5, 5, 5, 5 $ | $576$ | $5$ | $( 1, 2, 3, 6, 8)( 4, 9, 7, 5,10)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $20$ | $2$ | $(11,20)(13,14)(15,19)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $30$ | $2$ | $(11,20)(13,15)(14,19)(17,18)$ |
| $ 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $3$ | $(11,20,18)(12,19,15)(13,16,14)$ |
| $ 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $40$ | $6$ | $(11,13,18,14,20,16)(12,19,15)$ |
| $ 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $60$ | $4$ | $(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $48$ | $5$ | $(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $300$ | $2$ | $( 2,10)( 4, 7)( 5, 8)(11,20)(13,15)(14,19)(17,18)$ |
| $ 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1 $ | $400$ | $6$ | $( 2,10)( 4, 7)( 5, 8)(11,20,18)(12,19,15)(13,16,14)$ |
| $ 6, 3, 2, 2, 2, 1, 1, 1, 1, 1 $ | $400$ | $6$ | $( 2,10)( 4, 7)( 5, 8)(11,13,18,14,20,16)(12,19,15)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $600$ | $4$ | $( 2,10)( 4, 7)( 5, 8)(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 5, 5, 2, 2, 2, 1, 1, 1, 1 $ | $480$ | $10$ | $( 2,10)( 4, 7)( 5, 8)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 3, 3, 3, 2, 2, 2, 2, 1, 1, 1 $ | $600$ | $6$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)(11,20,18)(12,19,15)(13,16,14)$ |
| $ 6, 3, 2, 2, 2, 2, 1, 1, 1 $ | $600$ | $6$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)(11,13,18,14,20,16)(12,19,15)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 1, 1 $ | $900$ | $4$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 5, 5, 2, 2, 2, 2, 1, 1 $ | $720$ | $10$ | $( 2, 7)( 4,10)( 5, 8)( 6, 9)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 6, 3, 3, 3, 3, 1, 1 $ | $800$ | $6$ | $( 1, 2,10)( 3, 7, 4)( 5, 9, 8)(11,13,18,14,20,16)(12,19,15)$ |
| $ 4, 4, 3, 3, 3, 2, 1 $ | $1200$ | $12$ | $( 1, 2,10)( 3, 7, 4)( 5, 9, 8)(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 5, 5, 3, 3, 3, 1 $ | $960$ | $15$ | $( 1, 2,10)( 3, 7, 4)( 5, 9, 8)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 6, 4, 4, 3, 2, 1 $ | $1200$ | $12$ | $( 1, 2,10)( 3, 8, 4, 9, 7, 5)(11,20,18,17)(12,19,16,14)(13,15)$ |
| $ 6, 5, 5, 3, 1 $ | $960$ | $30$ | $( 1, 2,10)( 3, 8, 4, 9, 7, 5)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 5, 5, 4, 4, 2 $ | $1440$ | $20$ | $( 1, 2, 3, 7)( 4,10)( 5, 9, 6, 8)(11,12,19,16,17)(13,18,14,20,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $120$ | $2$ | $( 1,12)( 2,19)( 3,16)( 4,13)( 5,20)( 6,17)( 7,14)( 8,11)( 9,18)(10,15)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $1200$ | $4$ | $( 1,12)( 2,15,10,19)( 3,16)( 4,14, 7,13)( 5,11, 8,20)( 6,17)( 9,18)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $1800$ | $4$ | $( 1,12)( 2,14, 7,19)( 3,16)( 4,15,10,13)( 5,11, 8,20)( 6,18, 9,17)$ |
| $ 6, 6, 6, 2 $ | $2400$ | $6$ | $( 1,19, 2,15,10,12)( 3,14, 7,13, 4,16)( 5,18, 9,11, 8,20)( 6,17)$ |
| $ 12, 6, 2 $ | $2400$ | $12$ | $( 1,19, 2,15,10,12)( 3,11, 8,13, 4,18, 9,14, 7,20, 5,16)( 6,17)$ |
| $ 10, 10 $ | $2880$ | $10$ | $( 1,19, 2,16, 3,17, 6,11, 8,12)( 4,18, 9,14, 7,20, 5,15,10,13)$ |
| $ 8, 8, 4 $ | $3600$ | $8$ | $( 1,19, 2,16, 3,14, 7,12)( 4,15,10,13)( 5,18, 9,17, 6,11, 8,20)$ |
Group invariants
| Order: | $28800=2^{7} \cdot 3^{2} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |