Normalized defining polynomial
\( x^{20} - 5x^{16} - 185x^{14} - 1560x^{12} - 8180x^{10} - 2445x^{8} - 19895x^{6} + 11180x^{4} - 1575x^{2} + 20 \)
Invariants
Degree: | $20$ |
| |
Signature: | $[4, 8]$ |
| |
Discriminant: |
\(5135586343996594238281250000000000\)
\(\medspace = 2^{10}\cdot 5^{23}\cdot 29^{10}\)
|
| |
Root discriminant: | \(48.48\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{13}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{17\cdots 02}a^{18}-\frac{12\cdots 32}{86\cdots 51}a^{16}+\frac{15\cdots 23}{86\cdots 51}a^{14}+\frac{36\cdots 19}{17\cdots 02}a^{12}-\frac{1}{2}a^{11}-\frac{19\cdots 67}{86\cdots 51}a^{10}+\frac{63\cdots 11}{86\cdots 51}a^{8}-\frac{1}{2}a^{7}-\frac{58\cdots 07}{15\cdots 82}a^{6}+\frac{11\cdots 04}{86\cdots 51}a^{4}-\frac{1}{2}a^{3}+\frac{36\cdots 49}{15\cdots 82}a^{2}-\frac{1}{2}a+\frac{25\cdots 40}{86\cdots 51}$, $\frac{1}{17\cdots 02}a^{19}-\frac{12\cdots 32}{86\cdots 51}a^{17}+\frac{15\cdots 23}{86\cdots 51}a^{15}+\frac{36\cdots 19}{17\cdots 02}a^{13}-\frac{1}{2}a^{12}-\frac{19\cdots 67}{86\cdots 51}a^{11}+\frac{63\cdots 11}{86\cdots 51}a^{9}-\frac{1}{2}a^{8}-\frac{58\cdots 07}{15\cdots 82}a^{7}+\frac{11\cdots 04}{86\cdots 51}a^{5}-\frac{1}{2}a^{4}+\frac{36\cdots 49}{15\cdots 82}a^{3}-\frac{1}{2}a^{2}+\frac{25\cdots 40}{86\cdots 51}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{4}$, which has order $4$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{4}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $11$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{75\cdots 47}{86\cdots 51}a^{19}+\frac{36\cdots 78}{86\cdots 51}a^{18}+\frac{37\cdots 17}{17\cdots 02}a^{17}+\frac{18\cdots 17}{17\cdots 02}a^{16}-\frac{37\cdots 24}{86\cdots 51}a^{15}-\frac{18\cdots 37}{86\cdots 51}a^{14}-\frac{14\cdots 43}{86\cdots 51}a^{13}-\frac{13\cdots 77}{17\cdots 02}a^{12}-\frac{12\cdots 14}{86\cdots 51}a^{11}-\frac{11\cdots 77}{17\cdots 02}a^{10}-\frac{13\cdots 33}{17\cdots 02}a^{9}-\frac{31\cdots 38}{86\cdots 51}a^{8}-\frac{31\cdots 09}{78\cdots 41}a^{7}-\frac{30\cdots 11}{15\cdots 82}a^{6}-\frac{31\cdots 03}{17\cdots 02}a^{5}-\frac{77\cdots 50}{86\cdots 51}a^{4}+\frac{81\cdots 11}{15\cdots 82}a^{3}+\frac{39\cdots 77}{15\cdots 82}a^{2}-\frac{11\cdots 63}{17\cdots 02}a-\frac{31\cdots 76}{86\cdots 51}$, $\frac{60\cdots 83}{17\cdots 02}a^{19}-\frac{60\cdots 40}{86\cdots 51}a^{18}-\frac{15\cdots 42}{86\cdots 51}a^{17}-\frac{17\cdots 91}{17\cdots 02}a^{16}-\frac{15\cdots 79}{86\cdots 51}a^{15}+\frac{59\cdots 23}{17\cdots 02}a^{14}-\frac{10\cdots 07}{17\cdots 02}a^{13}+\frac{11\cdots 57}{86\cdots 51}a^{12}-\frac{43\cdots 66}{86\cdots 51}a^{11}+\frac{95\cdots 87}{86\cdots 51}a^{10}-\frac{44\cdots 31}{17\cdots 02}a^{9}+\frac{10\cdots 93}{17\cdots 02}a^{8}+\frac{58\cdots 72}{78\cdots 41}a^{7}+\frac{20\cdots 41}{78\cdots 41}a^{6}-\frac{51\cdots 34}{86\cdots 51}a^{5}+\frac{12\cdots 06}{86\cdots 51}a^{4}+\frac{12\cdots 33}{15\cdots 82}a^{3}-\frac{44\cdots 38}{78\cdots 41}a^{2}-\frac{23\cdots 57}{17\cdots 02}a+\frac{49\cdots 26}{86\cdots 51}$, $\frac{23\cdots 41}{17\cdots 02}a^{19}-\frac{30\cdots 21}{17\cdots 02}a^{18}+\frac{37\cdots 23}{17\cdots 02}a^{17}-\frac{20\cdots 83}{17\cdots 02}a^{16}-\frac{11\cdots 31}{17\cdots 02}a^{15}+\frac{74\cdots 48}{86\cdots 51}a^{14}-\frac{43\cdots 79}{17\cdots 02}a^{13}+\frac{28\cdots 94}{86\cdots 51}a^{12}-\frac{37\cdots 07}{17\cdots 02}a^{11}+\frac{50\cdots 97}{17\cdots 02}a^{10}-\frac{19\cdots 83}{17\cdots 02}a^{9}+\frac{13\cdots 27}{86\cdots 51}a^{8}-\frac{40\cdots 50}{78\cdots 41}a^{7}+\frac{10\cdots 76}{78\cdots 41}a^{6}-\frac{24\cdots 28}{86\cdots 51}a^{5}+\frac{32\cdots 57}{86\cdots 51}a^{4}+\frac{84\cdots 66}{78\cdots 41}a^{3}+\frac{13\cdots 61}{78\cdots 41}a^{2}-\frac{16\cdots 93}{17\cdots 02}a-\frac{21\cdots 38}{86\cdots 51}$, $\frac{23\cdots 41}{17\cdots 02}a^{19}+\frac{30\cdots 21}{17\cdots 02}a^{18}+\frac{37\cdots 23}{17\cdots 02}a^{17}+\frac{20\cdots 83}{17\cdots 02}a^{16}-\frac{11\cdots 31}{17\cdots 02}a^{15}-\frac{74\cdots 48}{86\cdots 51}a^{14}-\frac{43\cdots 79}{17\cdots 02}a^{13}-\frac{28\cdots 94}{86\cdots 51}a^{12}-\frac{37\cdots 07}{17\cdots 02}a^{11}-\frac{50\cdots 97}{17\cdots 02}a^{10}-\frac{19\cdots 83}{17\cdots 02}a^{9}-\frac{13\cdots 27}{86\cdots 51}a^{8}-\frac{40\cdots 50}{78\cdots 41}a^{7}-\frac{10\cdots 76}{78\cdots 41}a^{6}-\frac{24\cdots 28}{86\cdots 51}a^{5}-\frac{32\cdots 57}{86\cdots 51}a^{4}+\frac{84\cdots 66}{78\cdots 41}a^{3}-\frac{13\cdots 61}{78\cdots 41}a^{2}-\frac{16\cdots 93}{17\cdots 02}a+\frac{21\cdots 38}{86\cdots 51}$, $\frac{23\cdots 47}{86\cdots 51}a^{18}+\frac{47\cdots 95}{86\cdots 51}a^{16}-\frac{11\cdots 05}{86\cdots 51}a^{14}-\frac{43\cdots 25}{86\cdots 51}a^{12}-\frac{37\cdots 51}{86\cdots 51}a^{10}-\frac{19\cdots 15}{86\cdots 51}a^{8}-\frac{88\cdots 13}{78\cdots 41}a^{6}-\frac{48\cdots 40}{86\cdots 51}a^{4}+\frac{14\cdots 19}{78\cdots 41}a^{2}-\frac{44\cdots 49}{86\cdots 51}$, $\frac{27\cdots 96}{86\cdots 51}a^{19}-\frac{19\cdots 75}{78\cdots 41}a^{18}+\frac{17\cdots 79}{17\cdots 02}a^{17}-\frac{481377547657675}{15\cdots 82}a^{16}-\frac{27\cdots 23}{17\cdots 02}a^{15}+\frac{19\cdots 31}{15\cdots 82}a^{14}-\frac{10\cdots 27}{17\cdots 02}a^{13}+\frac{73\cdots 91}{15\cdots 82}a^{12}-\frac{43\cdots 43}{86\cdots 51}a^{11}+\frac{61\cdots 31}{15\cdots 82}a^{10}-\frac{45\cdots 07}{17\cdots 02}a^{9}+\frac{32\cdots 03}{15\cdots 82}a^{8}-\frac{13\cdots 99}{15\cdots 82}a^{7}+\frac{47\cdots 23}{78\cdots 41}a^{6}-\frac{11\cdots 05}{17\cdots 02}a^{5}+\frac{77\cdots 89}{15\cdots 82}a^{4}+\frac{53\cdots 07}{15\cdots 82}a^{3}-\frac{22\cdots 23}{78\cdots 41}a^{2}-\frac{74\cdots 85}{17\cdots 02}a+\frac{30\cdots 96}{78\cdots 41}$, $\frac{74\cdots 87}{17\cdots 02}a^{19}-\frac{45\cdots 87}{17\cdots 02}a^{18}-\frac{23\cdots 62}{86\cdots 51}a^{17}-\frac{12\cdots 65}{86\cdots 51}a^{16}-\frac{19\cdots 25}{86\cdots 51}a^{15}+\frac{21\cdots 79}{17\cdots 02}a^{14}-\frac{68\cdots 86}{86\cdots 51}a^{13}+\frac{85\cdots 05}{17\cdots 02}a^{12}-\frac{10\cdots 11}{17\cdots 02}a^{11}+\frac{37\cdots 84}{86\cdots 51}a^{10}-\frac{26\cdots 49}{86\cdots 51}a^{9}+\frac{41\cdots 79}{17\cdots 02}a^{8}+\frac{20\cdots 47}{15\cdots 82}a^{7}+\frac{15\cdots 75}{78\cdots 41}a^{6}-\frac{12\cdots 11}{17\cdots 02}a^{5}+\frac{10\cdots 47}{17\cdots 02}a^{4}+\frac{16\cdots 23}{15\cdots 82}a^{3}+\frac{16\cdots 87}{78\cdots 41}a^{2}-\frac{15\cdots 58}{86\cdots 51}a-\frac{19\cdots 29}{86\cdots 51}$, $\frac{40\cdots 43}{17\cdots 02}a^{19}-\frac{58\cdots 20}{86\cdots 51}a^{18}+\frac{15\cdots 66}{86\cdots 51}a^{17}-\frac{51\cdots 43}{86\cdots 51}a^{16}-\frac{19\cdots 61}{17\cdots 02}a^{15}+\frac{58\cdots 27}{17\cdots 02}a^{14}-\frac{37\cdots 80}{86\cdots 51}a^{13}+\frac{21\cdots 41}{17\cdots 02}a^{12}-\frac{31\cdots 66}{86\cdots 51}a^{11}+\frac{92\cdots 24}{86\cdots 51}a^{10}-\frac{16\cdots 72}{86\cdots 51}a^{9}+\frac{48\cdots 87}{86\cdots 51}a^{8}-\frac{57\cdots 04}{78\cdots 41}a^{7}+\frac{33\cdots 49}{15\cdots 82}a^{6}-\frac{40\cdots 92}{86\cdots 51}a^{5}+\frac{11\cdots 58}{86\cdots 51}a^{4}+\frac{34\cdots 67}{15\cdots 82}a^{3}-\frac{50\cdots 38}{78\cdots 41}a^{2}-\frac{30\cdots 86}{86\cdots 51}a-\frac{12\cdots 61}{86\cdots 51}$, $\frac{68\cdots 41}{17\cdots 02}a^{19}-\frac{13\cdots 65}{17\cdots 02}a^{18}+\frac{34\cdots 09}{17\cdots 02}a^{17}-\frac{11\cdots 54}{86\cdots 51}a^{16}-\frac{17\cdots 03}{86\cdots 51}a^{15}+\frac{34\cdots 83}{86\cdots 51}a^{14}-\frac{63\cdots 23}{86\cdots 51}a^{13}+\frac{25\cdots 93}{17\cdots 02}a^{12}-\frac{10\cdots 69}{17\cdots 02}a^{11}+\frac{22\cdots 87}{17\cdots 02}a^{10}-\frac{28\cdots 66}{86\cdots 51}a^{9}+\frac{11\cdots 31}{17\cdots 02}a^{8}-\frac{89\cdots 20}{78\cdots 41}a^{7}+\frac{48\cdots 41}{15\cdots 82}a^{6}-\frac{69\cdots 39}{86\cdots 51}a^{5}+\frac{14\cdots 58}{86\cdots 51}a^{4}+\frac{31\cdots 77}{78\cdots 41}a^{3}-\frac{48\cdots 50}{78\cdots 41}a^{2}-\frac{40\cdots 68}{86\cdots 51}a+\frac{33\cdots 03}{86\cdots 51}$, $\frac{84\cdots 87}{17\cdots 02}a^{19}+\frac{81\cdots 95}{15\cdots 82}a^{18}+\frac{13\cdots 97}{17\cdots 02}a^{17}+\frac{88\cdots 45}{78\cdots 41}a^{16}-\frac{41\cdots 35}{17\cdots 02}a^{15}-\frac{20\cdots 01}{78\cdots 41}a^{14}-\frac{78\cdots 20}{86\cdots 51}a^{13}-\frac{75\cdots 97}{78\cdots 41}a^{12}-\frac{13\cdots 71}{17\cdots 02}a^{11}-\frac{13\cdots 73}{15\cdots 82}a^{10}-\frac{35\cdots 11}{86\cdots 51}a^{9}-\frac{34\cdots 29}{78\cdots 41}a^{8}-\frac{14\cdots 61}{78\cdots 41}a^{7}-\frac{34\cdots 77}{15\cdots 82}a^{6}-\frac{17\cdots 11}{17\cdots 02}a^{5}-\frac{16\cdots 85}{15\cdots 82}a^{4}+\frac{59\cdots 65}{15\cdots 82}a^{3}+\frac{55\cdots 91}{15\cdots 82}a^{2}-\frac{52\cdots 07}{17\cdots 02}a+\frac{20\cdots 48}{78\cdots 41}$, $\frac{10\cdots 41}{17\cdots 02}a^{19}+\frac{10\cdots 87}{17\cdots 02}a^{18}+\frac{51\cdots 85}{17\cdots 02}a^{17}-\frac{22\cdots 35}{17\cdots 02}a^{16}-\frac{26\cdots 82}{86\cdots 51}a^{15}-\frac{25\cdots 91}{86\cdots 51}a^{14}-\frac{19\cdots 71}{17\cdots 02}a^{13}-\frac{18\cdots 31}{17\cdots 02}a^{12}-\frac{16\cdots 61}{17\cdots 02}a^{11}-\frac{15\cdots 63}{17\cdots 02}a^{10}-\frac{88\cdots 33}{17\cdots 02}a^{9}-\frac{83\cdots 97}{17\cdots 02}a^{8}-\frac{13\cdots 78}{78\cdots 41}a^{7}-\frac{10\cdots 70}{78\cdots 41}a^{6}-\frac{21\cdots 27}{17\cdots 02}a^{5}-\frac{20\cdots 89}{17\cdots 02}a^{4}+\frac{99\cdots 29}{15\cdots 82}a^{3}+\frac{10\cdots 89}{15\cdots 82}a^{2}-\frac{67\cdots 53}{86\cdots 51}a-\frac{78\cdots 47}{86\cdots 51}$
|
| |
Regulator: | \( 1863737091.17 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 1863737091.17 \cdot 4}{2\cdot\sqrt{5135586343996594238281250000000000}}\cr\approx \mathstrut & 2.02152239027 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.(C_2\times F_5)$ (as 20T514):
A solvable group of order 20480 |
The 74 conjugacy class representatives for $C_2^9.(C_2\times F_5)$ |
Character table for $C_2^9.(C_2\times F_5)$ |
Intermediate fields
\(\Q(\sqrt{145}) \), 5.1.2628125.1, 10.2.1001520947265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 20 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}{,}\,{\href{/padicField/53.4.0.1}{4} }$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
2.8.1.0a1.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
2.4.2.8a2.2 | $x^{8} + 4 x^{5} + 2 x^{4} + 3 x^{2} + 4 x + 7$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $$[2, 2, 2, 2]^{4}$$ | |
\(5\)
| 5.1.20.23a4.4 | $x^{20} + 5 x^{4} + 20$ | $20$ | $1$ | $23$ | not computed | not computed |
\(29\)
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
29.4.2.4a1.2 | $x^{8} + 4 x^{6} + 30 x^{5} + 8 x^{4} + 60 x^{3} + 233 x^{2} + 60 x + 33$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |