Properties

Label 20.4.124...584.1
Degree $20$
Signature $[4, 8]$
Discriminant $1.248\times 10^{29}$
Root discriminant \(28.50\)
Ramified primes $2,47$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^8:D_5$ (as 20T240)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824)
 
Copy content gp:K = bnfinit(y^20 - 4*y^19 + 40*y^17 - 96*y^16 - 44*y^15 + 576*y^14 - 616*y^13 - 524*y^12 + 3512*y^11 - 1440*y^10 - 2656*y^9 + 7296*y^8 - 3280*y^7 - 25232*y^6 - 36640*y^5 - 50368*y^4 - 117728*y^3 - 212256*y^2 - 168192*y - 41824, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824)
 

\( x^{20} - 4 x^{19} + 40 x^{17} - 96 x^{16} - 44 x^{15} + 576 x^{14} - 616 x^{13} - 524 x^{12} + \cdots - 41824 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(124759655006667637122698051584\) \(\medspace = 2^{30}\cdot 47^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(28.50\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(47\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}$, $\frac{1}{4}a^{9}$, $\frac{1}{4}a^{10}$, $\frac{1}{4}a^{11}$, $\frac{1}{8}a^{12}$, $\frac{1}{8}a^{13}$, $\frac{1}{8}a^{14}$, $\frac{1}{8}a^{15}$, $\frac{1}{16}a^{16}$, $\frac{1}{16}a^{17}$, $\frac{1}{16}a^{18}$, $\frac{1}{13\cdots 00}a^{19}-\frac{13\cdots 13}{13\cdots 00}a^{18}+\frac{24\cdots 21}{68\cdots 00}a^{17}+\frac{35\cdots 37}{13\cdots 00}a^{16}+\frac{30\cdots 23}{68\cdots 00}a^{15}-\frac{36\cdots 29}{68\cdots 00}a^{14}+\frac{15\cdots 37}{34\cdots 00}a^{13}-\frac{18\cdots 87}{34\cdots 00}a^{12}+\frac{24\cdots 77}{34\cdots 00}a^{11}+\frac{27\cdots 61}{34\cdots 50}a^{10}-\frac{19\cdots 77}{68\cdots 90}a^{9}-\frac{33\cdots 89}{34\cdots 00}a^{8}+\frac{39\cdots 43}{68\cdots 90}a^{7}+\frac{52\cdots 83}{34\cdots 50}a^{6}+\frac{49\cdots 93}{85\cdots 75}a^{5}+\frac{58\cdots 71}{17\cdots 50}a^{4}-\frac{82\cdots 81}{17\cdots 75}a^{3}-\frac{40\cdots 88}{85\cdots 75}a^{2}+\frac{21\cdots 26}{85\cdots 75}a+\frac{19\cdots 29}{85\cdots 75}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $11$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{44\cdots 57}{68\cdots 00}a^{19}+\frac{23\cdots 41}{68\cdots 00}a^{18}-\frac{32\cdots 69}{68\cdots 00}a^{17}-\frac{27\cdots 93}{13\cdots 00}a^{16}+\frac{63\cdots 03}{68\cdots 00}a^{15}-\frac{69\cdots 69}{68\cdots 00}a^{14}-\frac{43\cdots 09}{17\cdots 50}a^{13}+\frac{70\cdots 92}{85\cdots 75}a^{12}-\frac{70\cdots 57}{85\cdots 75}a^{11}-\frac{48\cdots 29}{34\cdots 50}a^{10}+\frac{11\cdots 14}{34\cdots 95}a^{9}-\frac{27\cdots 51}{85\cdots 75}a^{8}-\frac{54\cdots 56}{34\cdots 95}a^{7}+\frac{11\cdots 19}{17\cdots 75}a^{6}+\frac{55\cdots 73}{85\cdots 75}a^{5}+\frac{21\cdots 81}{17\cdots 50}a^{4}+\frac{28\cdots 09}{17\cdots 75}a^{3}+\frac{45\cdots 82}{85\cdots 75}a^{2}+\frac{53\cdots 36}{85\cdots 75}a+\frac{78\cdots 44}{85\cdots 75}$, $\frac{29\cdots 11}{37\cdots 52}a^{19}+\frac{31\cdots 49}{74\cdots 04}a^{18}-\frac{10\cdots 73}{18\cdots 26}a^{17}-\frac{37\cdots 67}{14\cdots 08}a^{16}+\frac{10\cdots 40}{93\cdots 63}a^{15}-\frac{40\cdots 29}{37\cdots 52}a^{14}-\frac{62\cdots 83}{18\cdots 26}a^{13}+\frac{17\cdots 13}{18\cdots 26}a^{12}-\frac{15\cdots 71}{18\cdots 26}a^{11}-\frac{17\cdots 01}{93\cdots 63}a^{10}+\frac{36\cdots 71}{93\cdots 63}a^{9}-\frac{10\cdots 13}{37\cdots 52}a^{8}-\frac{28\cdots 08}{93\cdots 63}a^{7}+\frac{69\cdots 80}{93\cdots 63}a^{6}+\frac{99\cdots 38}{93\cdots 63}a^{5}+\frac{11\cdots 59}{93\cdots 63}a^{4}+\frac{16\cdots 00}{93\cdots 63}a^{3}+\frac{59\cdots 96}{93\cdots 63}a^{2}+\frac{67\cdots 68}{93\cdots 63}a+\frac{13\cdots 32}{93\cdots 63}$, $\frac{97\cdots 07}{68\cdots 00}a^{19}+\frac{26\cdots 33}{34\cdots 00}a^{18}-\frac{69\cdots 69}{68\cdots 00}a^{17}-\frac{76\cdots 71}{17\cdots 50}a^{16}+\frac{13\cdots 03}{68\cdots 00}a^{15}-\frac{14\cdots 19}{68\cdots 00}a^{14}-\frac{50\cdots 92}{85\cdots 75}a^{13}+\frac{30\cdots 09}{17\cdots 50}a^{12}-\frac{27\cdots 89}{17\cdots 50}a^{11}-\frac{11\cdots 79}{34\cdots 50}a^{10}+\frac{25\cdots 29}{34\cdots 95}a^{9}-\frac{20\cdots 29}{34\cdots 00}a^{8}-\frac{15\cdots 76}{34\cdots 95}a^{7}+\frac{24\cdots 19}{17\cdots 75}a^{6}+\frac{14\cdots 23}{85\cdots 75}a^{5}+\frac{41\cdots 31}{17\cdots 50}a^{4}+\frac{59\cdots 09}{17\cdots 75}a^{3}+\frac{99\cdots 82}{85\cdots 75}a^{2}+\frac{11\cdots 36}{85\cdots 75}a+\frac{20\cdots 44}{85\cdots 75}$, $\frac{91\cdots 53}{13\cdots 00}a^{19}+\frac{26\cdots 57}{68\cdots 00}a^{18}-\frac{45\cdots 63}{68\cdots 00}a^{17}-\frac{12\cdots 93}{68\cdots 00}a^{16}+\frac{71\cdots 81}{68\cdots 00}a^{15}-\frac{10\cdots 13}{68\cdots 00}a^{14}-\frac{18\cdots 59}{85\cdots 75}a^{13}+\frac{32\cdots 11}{34\cdots 00}a^{12}-\frac{40\cdots 81}{34\cdots 00}a^{11}-\frac{79\cdots 41}{68\cdots 00}a^{10}+\frac{28\cdots 31}{68\cdots 90}a^{9}-\frac{14\cdots 83}{34\cdots 00}a^{8}-\frac{42\cdots 27}{34\cdots 95}a^{7}+\frac{26\cdots 01}{34\cdots 50}a^{6}+\frac{50\cdots 46}{85\cdots 75}a^{5}+\frac{68\cdots 87}{17\cdots 50}a^{4}+\frac{29\cdots 68}{17\cdots 75}a^{3}+\frac{40\cdots 14}{85\cdots 75}a^{2}+\frac{29\cdots 72}{85\cdots 75}a-\frac{57\cdots 12}{85\cdots 75}$, $\frac{44\cdots 41}{85\cdots 75}a^{19}+\frac{40\cdots 03}{13\cdots 00}a^{18}-\frac{30\cdots 51}{68\cdots 00}a^{17}-\frac{10\cdots 11}{68\cdots 00}a^{16}+\frac{13\cdots 53}{17\cdots 50}a^{15}-\frac{79\cdots 97}{85\cdots 75}a^{14}-\frac{34\cdots 61}{17\cdots 50}a^{13}+\frac{59\cdots 18}{85\cdots 75}a^{12}-\frac{23\cdots 87}{34\cdots 00}a^{11}-\frac{76\cdots 57}{68\cdots 00}a^{10}+\frac{10\cdots 26}{34\cdots 95}a^{9}-\frac{41\cdots 83}{17\cdots 50}a^{8}-\frac{55\cdots 74}{34\cdots 95}a^{7}+\frac{94\cdots 01}{17\cdots 75}a^{6}+\frac{51\cdots 42}{85\cdots 75}a^{5}+\frac{45\cdots 87}{85\cdots 75}a^{4}+\frac{14\cdots 61}{17\cdots 75}a^{3}+\frac{30\cdots 28}{85\cdots 75}a^{2}+\frac{32\cdots 94}{85\cdots 75}a-\frac{57\cdots 49}{85\cdots 75}$, $\frac{30\cdots 61}{68\cdots 00}a^{19}+\frac{32\cdots 11}{13\cdots 00}a^{18}-\frac{33\cdots 99}{13\cdots 00}a^{17}-\frac{29\cdots 33}{17\cdots 50}a^{16}+\frac{43\cdots 19}{68\cdots 00}a^{15}-\frac{22\cdots 37}{68\cdots 00}a^{14}-\frac{22\cdots 91}{85\cdots 75}a^{13}+\frac{17\cdots 89}{34\cdots 00}a^{12}-\frac{11\cdots 19}{34\cdots 00}a^{11}-\frac{51\cdots 17}{34\cdots 50}a^{10}+\frac{24\cdots 73}{13\cdots 80}a^{9}+\frac{11\cdots 33}{34\cdots 00}a^{8}-\frac{99\cdots 58}{34\cdots 95}a^{7}+\frac{45\cdots 87}{17\cdots 75}a^{6}+\frac{69\cdots 54}{85\cdots 75}a^{5}+\frac{83\cdots 13}{17\cdots 50}a^{4}+\frac{14\cdots 07}{17\cdots 75}a^{3}+\frac{15\cdots 11}{85\cdots 75}a^{2}+\frac{40\cdots 03}{85\cdots 75}a+\frac{11\cdots 62}{85\cdots 75}$, $\frac{39\cdots 21}{68\cdots 00}a^{19}+\frac{40\cdots 71}{13\cdots 00}a^{18}-\frac{48\cdots 89}{13\cdots 00}a^{17}-\frac{12\cdots 77}{68\cdots 00}a^{16}+\frac{53\cdots 59}{68\cdots 00}a^{15}-\frac{23\cdots 41}{34\cdots 00}a^{14}-\frac{42\cdots 77}{17\cdots 50}a^{13}+\frac{57\cdots 76}{85\cdots 75}a^{12}-\frac{17\cdots 59}{34\cdots 00}a^{11}-\frac{97\cdots 99}{68\cdots 00}a^{10}+\frac{36\cdots 43}{13\cdots 80}a^{9}-\frac{60\cdots 37}{34\cdots 00}a^{8}-\frac{14\cdots 11}{68\cdots 90}a^{7}+\frac{81\cdots 82}{17\cdots 75}a^{6}+\frac{70\cdots 94}{85\cdots 75}a^{5}+\frac{19\cdots 93}{17\cdots 50}a^{4}+\frac{25\cdots 77}{17\cdots 75}a^{3}+\frac{42\cdots 96}{85\cdots 75}a^{2}+\frac{52\cdots 33}{85\cdots 75}a+\frac{18\cdots 32}{85\cdots 75}$, $\frac{46\cdots 21}{68\cdots 00}a^{19}-\frac{42\cdots 71}{13\cdots 00}a^{18}+\frac{10\cdots 07}{68\cdots 00}a^{17}+\frac{22\cdots 19}{85\cdots 75}a^{16}-\frac{53\cdots 59}{68\cdots 00}a^{15}+\frac{17\cdots 33}{17\cdots 50}a^{14}+\frac{26\cdots 33}{68\cdots 00}a^{13}-\frac{21\cdots 79}{34\cdots 00}a^{12}-\frac{13\cdots 91}{34\cdots 00}a^{11}+\frac{16\cdots 99}{68\cdots 00}a^{10}-\frac{14\cdots 49}{68\cdots 90}a^{9}-\frac{23\cdots 63}{34\cdots 00}a^{8}+\frac{35\cdots 01}{68\cdots 90}a^{7}-\frac{16\cdots 39}{34\cdots 50}a^{6}-\frac{12\cdots 69}{85\cdots 75}a^{5}-\frac{30\cdots 93}{17\cdots 50}a^{4}-\frac{43\cdots 02}{17\cdots 75}a^{3}-\frac{58\cdots 46}{85\cdots 75}a^{2}-\frac{96\cdots 58}{85\cdots 75}a-\frac{52\cdots 82}{85\cdots 75}$, $\frac{19\cdots 27}{13\cdots 00}a^{19}-\frac{15\cdots 01}{13\cdots 00}a^{18}+\frac{46\cdots 09}{13\cdots 00}a^{17}-\frac{20\cdots 97}{17\cdots 50}a^{16}-\frac{18\cdots 79}{68\cdots 00}a^{15}+\frac{60\cdots 17}{68\cdots 00}a^{14}-\frac{48\cdots 77}{68\cdots 00}a^{13}-\frac{42\cdots 37}{17\cdots 50}a^{12}+\frac{14\cdots 77}{17\cdots 50}a^{11}-\frac{10\cdots 14}{17\cdots 75}a^{10}-\frac{44\cdots 22}{34\cdots 95}a^{9}+\frac{53\cdots 61}{17\cdots 50}a^{8}-\frac{13\cdots 19}{68\cdots 90}a^{7}-\frac{47\cdots 42}{17\cdots 75}a^{6}+\frac{24\cdots 47}{17\cdots 50}a^{5}+\frac{62\cdots 71}{85\cdots 75}a^{4}-\frac{23\cdots 12}{17\cdots 75}a^{3}-\frac{79\cdots 76}{85\cdots 75}a^{2}+\frac{32\cdots 27}{85\cdots 75}a-\frac{59\cdots 67}{85\cdots 75}$, $\frac{33\cdots 37}{13\cdots 00}a^{19}-\frac{12\cdots 19}{13\cdots 00}a^{18}-\frac{45\cdots 29}{13\cdots 00}a^{17}+\frac{10\cdots 89}{34\cdots 00}a^{16}-\frac{48\cdots 01}{68\cdots 00}a^{15}-\frac{10\cdots 77}{68\cdots 00}a^{14}+\frac{60\cdots 37}{68\cdots 00}a^{13}-\frac{49\cdots 87}{68\cdots 00}a^{12}-\frac{63\cdots 87}{17\cdots 50}a^{11}+\frac{95\cdots 84}{17\cdots 75}a^{10}-\frac{49\cdots 07}{13\cdots 80}a^{9}-\frac{57\cdots 57}{34\cdots 00}a^{8}+\frac{12\cdots 39}{68\cdots 90}a^{7}+\frac{35\cdots 79}{34\cdots 50}a^{6}-\frac{94\cdots 41}{85\cdots 75}a^{5}+\frac{12\cdots 73}{17\cdots 50}a^{4}+\frac{35\cdots 22}{17\cdots 75}a^{3}+\frac{20\cdots 56}{85\cdots 75}a^{2}-\frac{82\cdots 87}{85\cdots 75}a-\frac{13\cdots 98}{85\cdots 75}$, $\frac{52\cdots 79}{13\cdots 00}a^{19}-\frac{16\cdots 47}{85\cdots 75}a^{18}+\frac{35\cdots 43}{13\cdots 00}a^{17}+\frac{74\cdots 49}{68\cdots 00}a^{16}-\frac{16\cdots 79}{34\cdots 00}a^{15}+\frac{46\cdots 98}{85\cdots 75}a^{14}+\frac{10\cdots 37}{85\cdots 75}a^{13}-\frac{27\cdots 71}{68\cdots 00}a^{12}+\frac{15\cdots 83}{34\cdots 00}a^{11}+\frac{43\cdots 63}{68\cdots 00}a^{10}-\frac{54\cdots 19}{34\cdots 95}a^{9}+\frac{51\cdots 19}{34\cdots 00}a^{8}+\frac{83\cdots 41}{34\cdots 95}a^{7}-\frac{49\cdots 59}{17\cdots 75}a^{6}-\frac{86\cdots 31}{17\cdots 50}a^{5}-\frac{53\cdots 08}{85\cdots 75}a^{4}-\frac{16\cdots 74}{17\cdots 75}a^{3}-\frac{22\cdots 52}{85\cdots 75}a^{2}-\frac{22\cdots 71}{85\cdots 75}a-\frac{27\cdots 34}{85\cdots 75}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3180413.876043657 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{8}\cdot 3180413.876043657 \cdot 1}{2\cdot\sqrt{124759655006667637122698051584}}\cr\approx \mathstrut & 0.174974794000039 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 4*x^19 + 40*x^17 - 96*x^16 - 44*x^15 + 576*x^14 - 616*x^13 - 524*x^12 + 3512*x^11 - 1440*x^10 - 2656*x^9 + 7296*x^8 - 3280*x^7 - 25232*x^6 - 36640*x^5 - 50368*x^4 - 117728*x^3 - 212256*x^2 - 168192*x - 41824); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^8:D_5$ (as 20T240):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2560
The 52 conjugacy class representatives for $C_2^8:D_5$
Character table for $C_2^8:D_5$

Intermediate fields

5.1.2209.1, 10.2.4996793344.2, 10.2.11037916496896.10, 10.2.11037916496896.11

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.5.0.1}{5} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.5.0.1}{5} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{6}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{6}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ R ${\href{/padicField/53.5.0.1}{5} }^{4}$ ${\href{/padicField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.4.30a25.1$x^{20} + 4 x^{17} + 4 x^{15} + 6 x^{14} + 12 x^{12} + 6 x^{11} + 6 x^{10} + 12 x^{9} + 5 x^{8} + 12 x^{7} + 8 x^{6} + 6 x^{5} + 6 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$$4$$5$$30$20T17not computed
\(47\) Copy content Toggle raw display 47.1.2.1a1.2$x^{2} + 235$$2$$1$$1$$C_2$$$[\ ]_{2}$$
47.1.2.1a1.2$x^{2} + 235$$2$$1$$1$$C_2$$$[\ ]_{2}$$
47.2.2.2a1.2$x^{4} + 90 x^{3} + 2035 x^{2} + 450 x + 72$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
47.2.2.2a1.2$x^{4} + 90 x^{3} + 2035 x^{2} + 450 x + 72$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
47.2.4.6a1.2$x^{8} + 180 x^{7} + 12170 x^{6} + 367200 x^{5} + 4222275 x^{4} + 1836000 x^{3} + 304250 x^{2} + 22500 x + 672$$4$$2$$6$$D_4$$$[\ ]_{4}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)