Normalized defining polynomial
\( x^{20} - x^{18} + x^{16} + 6x^{14} - 15x^{12} + 21x^{10} - 21x^{8} + 14x^{6} - x^{4} - 5x^{2} - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[2, 9]$ |
| |
| Discriminant: |
\(-1292066884157440000000000\)
\(\medspace = -\,2^{28}\cdot 5^{10}\cdot 149^{4}\)
|
| |
| Root discriminant: | \(16.05\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(149\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{9}-\frac{1}{2}a^{5}-\frac{1}{4}a$, $\frac{1}{212}a^{18}+\frac{25}{212}a^{16}+\frac{15}{212}a^{14}+\frac{25}{212}a^{12}-\frac{1}{212}a^{10}+\frac{12}{53}a^{8}-\frac{1}{2}a^{7}+\frac{2}{53}a^{6}-\frac{1}{2}a^{5}+\frac{63}{212}a^{4}-\frac{1}{2}a^{3}+\frac{25}{53}a^{2}-\frac{55}{212}$, $\frac{1}{212}a^{19}+\frac{25}{212}a^{17}+\frac{15}{212}a^{15}+\frac{25}{212}a^{13}-\frac{1}{212}a^{11}+\frac{12}{53}a^{9}+\frac{2}{53}a^{7}-\frac{1}{2}a^{6}+\frac{63}{212}a^{5}+\frac{25}{53}a^{3}-\frac{55}{212}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{85}{106}a^{19}-\frac{101}{106}a^{17}+\frac{109}{106}a^{15}+\frac{241}{53}a^{13}-\frac{1357}{106}a^{11}+\frac{1033}{53}a^{9}-\frac{1144}{53}a^{7}+\frac{1751}{106}a^{5}-\frac{308}{53}a^{3}-\frac{138}{53}a$, $\frac{85}{106}a^{18}-\frac{101}{106}a^{16}+\frac{109}{106}a^{14}+\frac{241}{53}a^{12}-\frac{1357}{106}a^{10}+\frac{1033}{53}a^{8}-\frac{1144}{53}a^{6}+\frac{1751}{106}a^{4}-\frac{308}{53}a^{2}-\frac{138}{53}$, $\frac{85}{106}a^{18}-\frac{101}{106}a^{16}+\frac{109}{106}a^{14}+\frac{241}{53}a^{12}-\frac{1357}{106}a^{10}+\frac{1033}{53}a^{8}-\frac{1144}{53}a^{6}+\frac{1751}{106}a^{4}-\frac{255}{53}a^{2}-\frac{138}{53}$, $\frac{177}{212}a^{19}-\frac{239}{212}a^{17}+\frac{135}{106}a^{15}+\frac{245}{53}a^{13}-\frac{3039}{212}a^{11}+\frac{4839}{212}a^{9}-\frac{1342}{53}a^{7}+\frac{2051}{106}a^{5}-\frac{1221}{212}a^{3}-\frac{513}{212}a$, $\frac{29}{212}a^{18}-\frac{35}{106}a^{16}+\frac{16}{53}a^{14}+\frac{71}{106}a^{12}-\frac{665}{212}a^{10}+\frac{295}{53}a^{8}-\frac{679}{106}a^{6}+\frac{675}{106}a^{4}-\frac{545}{212}a^{2}-\frac{29}{106}$, $\frac{179}{212}a^{19}-\frac{21}{212}a^{18}-\frac{121}{106}a^{17}+\frac{5}{212}a^{16}+\frac{247}{212}a^{15}+\frac{3}{212}a^{14}+\frac{977}{212}a^{13}-\frac{77}{106}a^{12}-\frac{3041}{212}a^{11}+\frac{45}{53}a^{10}+\frac{4723}{212}a^{9}-\frac{40}{53}a^{8}-\frac{1338}{53}a^{7}-\frac{9}{212}a^{6}+\frac{4281}{212}a^{5}-\frac{51}{212}a^{4}-\frac{401}{53}a^{3}-\frac{33}{212}a^{2}-\frac{285}{106}a+\frac{21}{106}$, $\frac{307}{212}a^{19}+\frac{21}{106}a^{18}-\frac{381}{212}a^{17}-\frac{63}{212}a^{16}+\frac{209}{106}a^{15}+\frac{47}{212}a^{14}+\frac{1739}{212}a^{13}+\frac{255}{212}a^{12}-\frac{1256}{53}a^{11}-\frac{196}{53}a^{10}+\frac{7793}{212}a^{9}+\frac{531}{106}a^{8}-\frac{8515}{212}a^{7}-\frac{521}{106}a^{6}+\frac{3231}{106}a^{5}+\frac{579}{212}a^{4}-\frac{921}{106}a^{3}-\frac{93}{212}a^{2}-\frac{519}{106}a-\frac{243}{212}$, $\frac{99}{106}a^{19}+\frac{23}{53}a^{18}-\frac{61}{53}a^{17}-\frac{69}{106}a^{16}+\frac{267}{212}a^{15}+\frac{161}{212}a^{14}+\frac{567}{106}a^{13}+\frac{249}{106}a^{12}-\frac{3219}{212}a^{11}-\frac{1629}{212}a^{10}+\frac{4999}{212}a^{9}+\frac{2773}{212}a^{8}-\frac{5359}{212}a^{7}-\frac{3133}{212}a^{6}+\frac{4153}{212}a^{5}+\frac{2563}{212}a^{4}-\frac{297}{53}a^{3}-\frac{541}{106}a^{2}-\frac{767}{212}a-\frac{237}{212}$, $\frac{99}{106}a^{19}+\frac{63}{212}a^{18}-\frac{61}{53}a^{17}-\frac{17}{53}a^{16}+\frac{267}{212}a^{15}+\frac{97}{212}a^{14}+\frac{567}{106}a^{13}+\frac{89}{53}a^{12}-\frac{3219}{212}a^{11}-\frac{241}{53}a^{10}+\frac{4999}{212}a^{9}+\frac{1593}{212}a^{8}-\frac{5359}{212}a^{7}-\frac{1775}{212}a^{6}+\frac{4153}{212}a^{5}+\frac{1425}{212}a^{4}-\frac{297}{53}a^{3}-\frac{537}{212}a^{2}-\frac{767}{212}a-\frac{179}{212}$, $\frac{11}{53}a^{19}-\frac{87}{212}a^{18}-\frac{33}{106}a^{17}+\frac{26}{53}a^{16}+\frac{77}{212}a^{15}-\frac{43}{106}a^{14}+\frac{199}{212}a^{13}-\frac{479}{212}a^{12}-\frac{393}{106}a^{11}+\frac{353}{53}a^{10}+\frac{1317}{212}a^{9}-\frac{975}{106}a^{8}-\frac{442}{53}a^{7}+\frac{2219}{212}a^{6}+\frac{1553}{212}a^{5}-\frac{403}{53}a^{4}-\frac{741}{212}a^{3}+\frac{104}{53}a^{2}+\frac{9}{106}a+\frac{439}{212}$
|
| |
| Regulator: | \( 11903.1740533 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 11903.1740533 \cdot 1}{2\cdot\sqrt{1292066884157440000000000}}\cr\approx \mathstrut & 0.319645869770 \end{aligned}\] (assuming GRH)
Galois group
$A_5^2:D_4$ (as 20T546):
| A non-solvable group of order 28800 |
| The 65 conjugacy class representatives for $A_5^2:D_4$ |
| Character table for $A_5^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.400.1, 10.2.17760800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{5}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ |
| 2.2.8.24b2.5 | $x^{16} + 8 x^{15} + 38 x^{14} + 126 x^{13} + 322 x^{12} + 660 x^{11} + 1116 x^{10} + 1578 x^{9} + 1881 x^{8} + 1892 x^{7} + 1600 x^{6} + 1126 x^{5} + 650 x^{4} + 300 x^{3} + 108 x^{2} + 28 x + 7$ | $8$ | $2$ | $24$ | 16T193 | $$[\frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{2}$$ | |
|
\(5\)
| 5.10.2.10a1.2 | $x^{20} + 6 x^{15} + 6 x^{14} + 4 x^{13} + 8 x^{12} + 2 x^{11} + 13 x^{10} + 18 x^{9} + 21 x^{8} + 36 x^{7} + 34 x^{6} + 34 x^{5} + 32 x^{4} + 16 x^{3} + 17 x^{2} + 4 x + 9$ | $2$ | $10$ | $10$ | 20T3 | not computed |
|
\(149\)
| 149.2.1.0a1.1 | $x^{2} + 145 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 149.2.1.0a1.1 | $x^{2} + 145 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 149.2.3.4a1.2 | $x^{6} + 435 x^{5} + 63081 x^{4} + 3050365 x^{3} + 126162 x^{2} + 1740 x + 157$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 149.10.1.0a1.1 | $x^{10} + 74 x^{5} + 42 x^{4} + 148 x^{3} + 143 x^{2} + 51 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ |