Properties

Label 20.12.477...000.1
Degree $20$
Signature $[12, 4]$
Discriminant $4.771\times 10^{38}$
Root discriminant \(85.89\)
Ramified primes $2,5,13,29,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^8.\POPlus(4,5)$ (as 20T1009)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044)
 
Copy content gp:K = bnfinit(y^20 - y^19 - y^18 + 16*y^17 - 324*y^16 + 428*y^15 + 1518*y^14 - 3988*y^13 + 25206*y^12 - 26004*y^11 - 267284*y^10 + 195890*y^9 + 1107664*y^8 + 522788*y^7 - 1969346*y^6 - 4696656*y^5 - 1652499*y^4 + 6284213*y^3 + 7775165*y^2 + 3039454*y + 302044, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044)
 

\( x^{20} - x^{19} - x^{18} + 16 x^{17} - 324 x^{16} + 428 x^{15} + 1518 x^{14} - 3988 x^{13} + \cdots + 302044 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[12, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(477051862117015968785053941760000000000\) \(\medspace = 2^{24}\cdot 5^{10}\cdot 13^{6}\cdot 29^{4}\cdot 31^{8}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(85.89\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(5\), \(13\), \(29\), \(31\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{9}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{10}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{17}-\frac{1}{4}a^{15}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{2}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{27\cdots 44}a^{19}-\frac{14\cdots 71}{13\cdots 22}a^{18}-\frac{37\cdots 15}{27\cdots 44}a^{17}-\frac{55\cdots 49}{27\cdots 44}a^{16}+\frac{65\cdots 07}{27\cdots 44}a^{15}-\frac{85\cdots 81}{27\cdots 44}a^{14}-\frac{56\cdots 79}{27\cdots 44}a^{13}+\frac{47\cdots 03}{27\cdots 44}a^{12}-\frac{81\cdots 89}{27\cdots 44}a^{11}-\frac{13\cdots 59}{27\cdots 44}a^{10}-\frac{42\cdots 57}{27\cdots 44}a^{9}-\frac{59\cdots 57}{27\cdots 44}a^{8}+\frac{87\cdots 91}{27\cdots 44}a^{7}+\frac{99\cdots 11}{27\cdots 44}a^{6}+\frac{39\cdots 53}{27\cdots 44}a^{5}-\frac{93\cdots 81}{27\cdots 44}a^{4}+\frac{49\cdots 23}{13\cdots 22}a^{3}+\frac{16\cdots 07}{27\cdots 44}a^{2}+\frac{14\cdots 59}{13\cdots 22}a+\frac{19\cdots 53}{69\cdots 11}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $15$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\cdots 59}{82\cdots 56}a^{19}-\frac{27\cdots 09}{82\cdots 56}a^{18}+\frac{12\cdots 97}{41\cdots 78}a^{17}+\frac{15\cdots 95}{82\cdots 56}a^{16}-\frac{20\cdots 17}{41\cdots 78}a^{15}+\frac{10\cdots 01}{82\cdots 56}a^{14}+\frac{97\cdots 51}{20\cdots 89}a^{13}-\frac{51\cdots 65}{82\cdots 56}a^{12}+\frac{91\cdots 72}{20\cdots 89}a^{11}-\frac{79\cdots 99}{82\cdots 56}a^{10}-\frac{52\cdots 75}{20\cdots 89}a^{9}+\frac{50\cdots 43}{82\cdots 56}a^{8}+\frac{32\cdots 81}{41\cdots 78}a^{7}-\frac{19\cdots 87}{82\cdots 56}a^{6}-\frac{54\cdots 16}{20\cdots 89}a^{5}-\frac{27\cdots 93}{82\cdots 56}a^{4}+\frac{19\cdots 09}{82\cdots 56}a^{3}+\frac{24\cdots 47}{41\cdots 78}a^{2}+\frac{11\cdots 41}{41\cdots 78}a-\frac{27\cdots 90}{20\cdots 89}$, $\frac{51\cdots 49}{13\cdots 22}a^{19}-\frac{97\cdots 81}{13\cdots 22}a^{18}+\frac{17\cdots 40}{69\cdots 11}a^{17}+\frac{39\cdots 38}{69\cdots 11}a^{16}-\frac{86\cdots 75}{69\cdots 11}a^{15}+\frac{18\cdots 31}{69\cdots 11}a^{14}+\frac{22\cdots 32}{69\cdots 11}a^{13}-\frac{12\cdots 82}{69\cdots 11}a^{12}+\frac{15\cdots 21}{13\cdots 22}a^{11}-\frac{13\cdots 81}{69\cdots 11}a^{10}-\frac{11\cdots 89}{13\cdots 22}a^{9}+\frac{10\cdots 36}{69\cdots 11}a^{8}+\frac{19\cdots 34}{69\cdots 11}a^{7}-\frac{38\cdots 09}{69\cdots 11}a^{6}-\frac{47\cdots 02}{69\cdots 11}a^{5}-\frac{79\cdots 17}{69\cdots 11}a^{4}+\frac{27\cdots 09}{69\cdots 11}a^{3}+\frac{27\cdots 45}{13\cdots 22}a^{2}+\frac{15\cdots 19}{13\cdots 22}a+\frac{88\cdots 27}{69\cdots 11}$, $\frac{22\cdots 71}{27\cdots 44}a^{19}-\frac{42\cdots 99}{27\cdots 44}a^{18}+\frac{24\cdots 99}{69\cdots 11}a^{17}+\frac{35\cdots 41}{27\cdots 44}a^{16}-\frac{38\cdots 55}{13\cdots 22}a^{15}+\frac{16\cdots 93}{27\cdots 44}a^{14}+\frac{54\cdots 86}{69\cdots 11}a^{13}-\frac{11\cdots 83}{27\cdots 44}a^{12}+\frac{33\cdots 21}{13\cdots 22}a^{11}-\frac{11\cdots 75}{27\cdots 44}a^{10}-\frac{26\cdots 77}{13\cdots 22}a^{9}+\frac{88\cdots 53}{27\cdots 44}a^{8}+\frac{92\cdots 41}{13\cdots 22}a^{7}-\frac{34\cdots 79}{27\cdots 44}a^{6}-\frac{10\cdots 71}{69\cdots 11}a^{5}-\frac{73\cdots 47}{27\cdots 44}a^{4}+\frac{22\cdots 03}{27\cdots 44}a^{3}+\frac{32\cdots 63}{69\cdots 11}a^{2}+\frac{37\cdots 33}{13\cdots 22}a+\frac{19\cdots 34}{69\cdots 11}$, $\frac{70\cdots 37}{13\cdots 22}a^{19}-\frac{65\cdots 32}{69\cdots 11}a^{18}+\frac{15\cdots 76}{69\cdots 11}a^{17}+\frac{55\cdots 33}{69\cdots 11}a^{16}-\frac{11\cdots 52}{69\cdots 11}a^{15}+\frac{50\cdots 63}{13\cdots 22}a^{14}+\frac{33\cdots 85}{69\cdots 11}a^{13}-\frac{17\cdots 04}{69\cdots 11}a^{12}+\frac{20\cdots 53}{13\cdots 22}a^{11}-\frac{17\cdots 45}{69\cdots 11}a^{10}-\frac{16\cdots 35}{13\cdots 22}a^{9}+\frac{13\cdots 48}{69\cdots 11}a^{8}+\frac{28\cdots 68}{69\cdots 11}a^{7}-\frac{10\cdots 93}{13\cdots 22}a^{6}-\frac{67\cdots 32}{69\cdots 11}a^{5}-\frac{11\cdots 75}{69\cdots 11}a^{4}+\frac{35\cdots 68}{69\cdots 11}a^{3}+\frac{19\cdots 66}{69\cdots 11}a^{2}+\frac{23\cdots 47}{13\cdots 22}a+\frac{11\cdots 72}{69\cdots 11}$, $\frac{48\cdots 87}{27\cdots 44}a^{19}-\frac{92\cdots 51}{27\cdots 44}a^{18}+\frac{19\cdots 63}{13\cdots 22}a^{17}+\frac{73\cdots 49}{27\cdots 44}a^{16}-\frac{81\cdots 81}{13\cdots 22}a^{15}+\frac{35\cdots 99}{27\cdots 44}a^{14}+\frac{99\cdots 43}{69\cdots 11}a^{13}-\frac{22\cdots 65}{27\cdots 44}a^{12}+\frac{35\cdots 14}{69\cdots 11}a^{11}-\frac{25\cdots 33}{27\cdots 44}a^{10}-\frac{26\cdots 29}{69\cdots 11}a^{9}+\frac{18\cdots 49}{27\cdots 44}a^{8}+\frac{17\cdots 21}{13\cdots 22}a^{7}-\frac{73\cdots 13}{27\cdots 44}a^{6}-\frac{21\cdots 28}{69\cdots 11}a^{5}-\frac{14\cdots 25}{27\cdots 44}a^{4}+\frac{53\cdots 41}{27\cdots 44}a^{3}+\frac{12\cdots 15}{13\cdots 22}a^{2}+\frac{69\cdots 19}{13\cdots 22}a+\frac{38\cdots 45}{69\cdots 11}$, $\frac{81\cdots 75}{27\cdots 44}a^{19}-\frac{15\cdots 61}{27\cdots 44}a^{18}+\frac{23\cdots 41}{13\cdots 22}a^{17}+\frac{12\cdots 39}{27\cdots 44}a^{16}-\frac{68\cdots 56}{69\cdots 11}a^{15}+\frac{58\cdots 59}{27\cdots 44}a^{14}+\frac{36\cdots 47}{13\cdots 22}a^{13}-\frac{38\cdots 69}{27\cdots 44}a^{12}+\frac{59\cdots 62}{69\cdots 11}a^{11}-\frac{41\cdots 59}{27\cdots 44}a^{10}-\frac{45\cdots 26}{69\cdots 11}a^{9}+\frac{31\cdots 47}{27\cdots 44}a^{8}+\frac{15\cdots 73}{69\cdots 11}a^{7}-\frac{12\cdots 89}{27\cdots 44}a^{6}-\frac{76\cdots 69}{13\cdots 22}a^{5}-\frac{25\cdots 01}{27\cdots 44}a^{4}+\frac{84\cdots 45}{27\cdots 44}a^{3}+\frac{22\cdots 65}{13\cdots 22}a^{2}+\frac{12\cdots 89}{13\cdots 22}a+\frac{73\cdots 94}{69\cdots 11}$, $\frac{55\cdots 50}{69\cdots 11}a^{19}-\frac{39\cdots 18}{69\cdots 11}a^{18}-\frac{13\cdots 60}{69\cdots 11}a^{17}+\frac{10\cdots 81}{69\cdots 11}a^{16}-\frac{17\cdots 25}{69\cdots 11}a^{15}+\frac{17\cdots 50}{69\cdots 11}a^{14}+\frac{11\cdots 62}{69\cdots 11}a^{13}-\frac{26\cdots 69}{69\cdots 11}a^{12}+\frac{26\cdots 29}{13\cdots 22}a^{11}-\frac{14\cdots 13}{13\cdots 22}a^{10}-\frac{34\cdots 57}{13\cdots 22}a^{9}+\frac{11\cdots 57}{69\cdots 11}a^{8}+\frac{75\cdots 33}{69\cdots 11}a^{7}+\frac{12\cdots 30}{69\cdots 11}a^{6}-\frac{13\cdots 13}{69\cdots 11}a^{5}-\frac{25\cdots 60}{69\cdots 11}a^{4}-\frac{78\cdots 63}{13\cdots 22}a^{3}+\frac{88\cdots 77}{13\cdots 22}a^{2}+\frac{69\cdots 45}{13\cdots 22}a+\frac{49\cdots 23}{69\cdots 11}$, $\frac{15\cdots 55}{69\cdots 11}a^{19}-\frac{29\cdots 47}{69\cdots 11}a^{18}+\frac{11\cdots 06}{69\cdots 11}a^{17}+\frac{23\cdots 69}{69\cdots 11}a^{16}-\frac{52\cdots 51}{69\cdots 11}a^{15}+\frac{22\cdots 13}{13\cdots 22}a^{14}+\frac{13\cdots 79}{69\cdots 11}a^{13}-\frac{14\cdots 73}{13\cdots 22}a^{12}+\frac{91\cdots 25}{13\cdots 22}a^{11}-\frac{81\cdots 53}{69\cdots 11}a^{10}-\frac{68\cdots 43}{13\cdots 22}a^{9}+\frac{60\cdots 71}{69\cdots 11}a^{8}+\frac{11\cdots 19}{69\cdots 11}a^{7}-\frac{46\cdots 43}{13\cdots 22}a^{6}-\frac{28\cdots 76}{69\cdots 11}a^{5}-\frac{94\cdots 09}{13\cdots 22}a^{4}+\frac{33\cdots 11}{13\cdots 22}a^{3}+\frac{81\cdots 97}{69\cdots 11}a^{2}+\frac{92\cdots 07}{13\cdots 22}a+\frac{50\cdots 16}{69\cdots 11}$, $\frac{10\cdots 39}{27\cdots 44}a^{19}-\frac{19\cdots 53}{27\cdots 44}a^{18}+\frac{34\cdots 83}{13\cdots 22}a^{17}+\frac{15\cdots 57}{27\cdots 44}a^{16}-\frac{17\cdots 33}{13\cdots 22}a^{15}+\frac{75\cdots 23}{27\cdots 44}a^{14}+\frac{22\cdots 81}{69\cdots 11}a^{13}-\frac{49\cdots 63}{27\cdots 44}a^{12}+\frac{15\cdots 77}{13\cdots 22}a^{11}-\frac{53\cdots 25}{27\cdots 44}a^{10}-\frac{11\cdots 39}{13\cdots 22}a^{9}+\frac{40\cdots 01}{27\cdots 44}a^{8}+\frac{39\cdots 87}{13\cdots 22}a^{7}-\frac{15\cdots 49}{27\cdots 44}a^{6}-\frac{47\cdots 86}{69\cdots 11}a^{5}-\frac{31\cdots 75}{27\cdots 44}a^{4}+\frac{11\cdots 27}{27\cdots 44}a^{3}+\frac{13\cdots 49}{69\cdots 11}a^{2}+\frac{78\cdots 89}{69\cdots 11}a+\frac{88\cdots 17}{69\cdots 11}$, $\frac{11\cdots 40}{69\cdots 11}a^{19}-\frac{37\cdots 68}{69\cdots 11}a^{18}-\frac{83\cdots 69}{13\cdots 22}a^{17}+\frac{15\cdots 71}{69\cdots 11}a^{16}-\frac{82\cdots 41}{13\cdots 22}a^{15}+\frac{12\cdots 52}{69\cdots 11}a^{14}+\frac{10\cdots 65}{69\cdots 11}a^{13}-\frac{71\cdots 71}{69\cdots 11}a^{12}+\frac{73\cdots 01}{13\cdots 22}a^{11}-\frac{95\cdots 80}{69\cdots 11}a^{10}-\frac{26\cdots 41}{69\cdots 11}a^{9}+\frac{80\cdots 84}{69\cdots 11}a^{8}+\frac{22\cdots 71}{13\cdots 22}a^{7}-\frac{10\cdots 44}{69\cdots 11}a^{6}-\frac{40\cdots 41}{69\cdots 11}a^{5}-\frac{47\cdots 09}{69\cdots 11}a^{4}+\frac{80\cdots 09}{13\cdots 22}a^{3}+\frac{11\cdots 17}{69\cdots 11}a^{2}+\frac{13\cdots 21}{13\cdots 22}a+\frac{73\cdots 30}{69\cdots 11}$, $\frac{10\cdots 52}{69\cdots 11}a^{19}-\frac{38\cdots 27}{27\cdots 44}a^{18}+\frac{14\cdots 09}{27\cdots 44}a^{17}-\frac{62\cdots 43}{13\cdots 22}a^{16}-\frac{15\cdots 55}{27\cdots 44}a^{15}+\frac{71\cdots 33}{13\cdots 22}a^{14}-\frac{47\cdots 65}{27\cdots 44}a^{13}+\frac{11\cdots 69}{13\cdots 22}a^{12}+\frac{25\cdots 73}{27\cdots 44}a^{11}-\frac{69\cdots 73}{13\cdots 22}a^{10}+\frac{33\cdots 87}{27\cdots 44}a^{9}+\frac{14\cdots 75}{13\cdots 22}a^{8}-\frac{20\cdots 35}{27\cdots 44}a^{7}+\frac{10\cdots 11}{13\cdots 22}a^{6}+\frac{18\cdots 67}{27\cdots 44}a^{5}+\frac{30\cdots 75}{13\cdots 22}a^{4}+\frac{28\cdots 45}{27\cdots 44}a^{3}-\frac{12\cdots 35}{27\cdots 44}a^{2}-\frac{52\cdots 51}{13\cdots 22}a-\frac{31\cdots 00}{69\cdots 11}$, $\frac{22\cdots 35}{27\cdots 44}a^{19}-\frac{42\cdots 01}{27\cdots 44}a^{18}+\frac{34\cdots 93}{69\cdots 11}a^{17}+\frac{35\cdots 05}{27\cdots 44}a^{16}-\frac{38\cdots 19}{13\cdots 22}a^{15}+\frac{16\cdots 23}{27\cdots 44}a^{14}+\frac{10\cdots 13}{13\cdots 22}a^{13}-\frac{10\cdots 93}{27\cdots 44}a^{12}+\frac{33\cdots 95}{13\cdots 22}a^{11}-\frac{11\cdots 65}{27\cdots 44}a^{10}-\frac{12\cdots 27}{69\cdots 11}a^{9}+\frac{89\cdots 25}{27\cdots 44}a^{8}+\frac{88\cdots 27}{13\cdots 22}a^{7}-\frac{32\cdots 17}{27\cdots 44}a^{6}-\frac{21\cdots 87}{13\cdots 22}a^{5}-\frac{71\cdots 69}{27\cdots 44}a^{4}+\frac{23\cdots 03}{27\cdots 44}a^{3}+\frac{31\cdots 73}{69\cdots 11}a^{2}+\frac{17\cdots 05}{69\cdots 11}a+\frac{20\cdots 81}{69\cdots 11}$, $\frac{33\cdots 83}{69\cdots 11}a^{19}-\frac{58\cdots 08}{69\cdots 11}a^{18}+\frac{10\cdots 78}{69\cdots 11}a^{17}+\frac{52\cdots 32}{69\cdots 11}a^{16}-\frac{11\cdots 50}{69\cdots 11}a^{15}+\frac{45\cdots 63}{13\cdots 22}a^{14}+\frac{66\cdots 91}{13\cdots 22}a^{13}-\frac{31\cdots 85}{13\cdots 22}a^{12}+\frac{95\cdots 42}{69\cdots 11}a^{11}-\frac{15\cdots 39}{69\cdots 11}a^{10}-\frac{77\cdots 95}{69\cdots 11}a^{9}+\frac{12\cdots 52}{69\cdots 11}a^{8}+\frac{27\cdots 26}{69\cdots 11}a^{7}-\frac{63\cdots 09}{13\cdots 22}a^{6}-\frac{12\cdots 81}{13\cdots 22}a^{5}-\frac{21\cdots 05}{13\cdots 22}a^{4}+\frac{26\cdots 40}{69\cdots 11}a^{3}+\frac{18\cdots 65}{69\cdots 11}a^{2}+\frac{11\cdots 88}{69\cdots 11}a+\frac{14\cdots 73}{69\cdots 11}$, $\frac{45\cdots 12}{69\cdots 11}a^{19}-\frac{34\cdots 11}{27\cdots 44}a^{18}+\frac{13\cdots 69}{27\cdots 44}a^{17}+\frac{13\cdots 49}{13\cdots 22}a^{16}-\frac{61\cdots 19}{27\cdots 44}a^{15}+\frac{66\cdots 63}{13\cdots 22}a^{14}+\frac{15\cdots 75}{27\cdots 44}a^{13}-\frac{21\cdots 90}{69\cdots 11}a^{12}+\frac{53\cdots 73}{27\cdots 44}a^{11}-\frac{47\cdots 75}{13\cdots 22}a^{10}-\frac{39\cdots 07}{27\cdots 44}a^{9}+\frac{35\cdots 79}{13\cdots 22}a^{8}+\frac{13\cdots 17}{27\cdots 44}a^{7}-\frac{14\cdots 69}{13\cdots 22}a^{6}-\frac{33\cdots 17}{27\cdots 44}a^{5}-\frac{13\cdots 09}{69\cdots 11}a^{4}+\frac{20\cdots 05}{27\cdots 44}a^{3}+\frac{95\cdots 25}{27\cdots 44}a^{2}+\frac{13\cdots 73}{69\cdots 11}a+\frac{15\cdots 87}{69\cdots 11}$, $\frac{41\cdots 05}{13\cdots 22}a^{19}-\frac{14\cdots 43}{27\cdots 44}a^{18}+\frac{22\cdots 21}{27\cdots 44}a^{17}+\frac{33\cdots 12}{69\cdots 11}a^{16}-\frac{27\cdots 55}{27\cdots 44}a^{15}+\frac{13\cdots 75}{69\cdots 11}a^{14}+\frac{85\cdots 65}{27\cdots 44}a^{13}-\frac{19\cdots 91}{13\cdots 22}a^{12}+\frac{23\cdots 95}{27\cdots 44}a^{11}-\frac{19\cdots 23}{13\cdots 22}a^{10}-\frac{19\cdots 59}{27\cdots 44}a^{9}+\frac{76\cdots 99}{69\cdots 11}a^{8}+\frac{69\cdots 97}{27\cdots 44}a^{7}-\frac{18\cdots 80}{69\cdots 11}a^{6}-\frac{15\cdots 51}{27\cdots 44}a^{5}-\frac{13\cdots 01}{13\cdots 22}a^{4}+\frac{62\cdots 01}{27\cdots 44}a^{3}+\frac{47\cdots 25}{27\cdots 44}a^{2}+\frac{74\cdots 61}{69\cdots 11}a+\frac{85\cdots 94}{69\cdots 11}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2524911578570 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{4}\cdot 2524911578570 \cdot 1}{2\cdot\sqrt{477051862117015968785053941760000000000}}\cr\approx \mathstrut & 0.368988475278619 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 - x^18 + 16*x^17 - 324*x^16 + 428*x^15 + 1518*x^14 - 3988*x^13 + 25206*x^12 - 26004*x^11 - 267284*x^10 + 195890*x^9 + 1107664*x^8 + 522788*x^7 - 1969346*x^6 - 4696656*x^5 - 1652499*x^4 + 6284213*x^3 + 7775165*x^2 + 3039454*x + 302044); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^8.\POPlus(4,5)$ (as 20T1009):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 3686400
The 114 conjugacy class representatives for $C_2^8.\POPlus(4,5)$
Character table for $C_2^8.\POPlus(4,5)$

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.109268775200000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 sibling: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.10.0.1}{10} }^{2}$ R ${\href{/padicField/7.10.0.1}{10} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}$ R ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.10.0.1}{10} }^{2}$ R R ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.10.0.1}{10} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.2.8.24b3.5$x^{16} + 8 x^{15} + 38 x^{14} + 126 x^{13} + 322 x^{12} + 658 x^{11} + 1108 x^{10} + 1558 x^{9} + 1851 x^{8} + 1862 x^{7} + 1590 x^{6} + 1146 x^{5} + 694 x^{4} + 346 x^{3} + 138 x^{2} + 40 x + 9$$8$$2$$24$16T1286$$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{6}$$
\(5\) Copy content Toggle raw display 5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.4.2.4a1.2$x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
5.4.2.4a1.2$x^{8} + 8 x^{6} + 8 x^{5} + 20 x^{4} + 32 x^{3} + 32 x^{2} + 16 x + 9$$2$$4$$4$$C_4\times C_2$$$[\ ]_{2}^{4}$$
\(13\) Copy content Toggle raw display 13.6.1.0a1.1$x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
13.6.1.0a1.1$x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
13.2.4.6a1.3$x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 397 x + 159$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
\(29\) Copy content Toggle raw display 29.4.1.0a1.1$x^{4} + 2 x^{2} + 15 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
29.5.1.0a1.1$x^{5} + 3 x + 27$$1$$5$$0$$C_5$$$[\ ]^{5}$$
29.5.1.0a1.1$x^{5} + 3 x + 27$$1$$5$$0$$C_5$$$[\ ]^{5}$$
29.2.3.4a1.2$x^{6} + 72 x^{5} + 1734 x^{4} + 14112 x^{3} + 3468 x^{2} + 288 x + 37$$3$$2$$4$$S_3$$$[\ ]_{3}^{2}$$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{31}$$x + 28$$1$$1$$0$Trivial$$[\ ]$$
31.2.1.0a1.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
31.2.1.0a1.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
31.2.3.4a1.3$x^{6} + 87 x^{5} + 2532 x^{4} + 24911 x^{3} + 7596 x^{2} + 845 x + 895$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
31.4.2.4a1.1$x^{8} + 6 x^{6} + 32 x^{5} + 15 x^{4} + 96 x^{3} + 274 x^{2} + 127 x + 9$$2$$4$$4$$C_8$$$[\ ]_{2}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)