Normalized defining polynomial
\( x^{20} - 64 x^{18} + 1244 x^{16} - 6262 x^{14} - 20928 x^{12} + 216742 x^{10} - 261295 x^{8} + \cdots + 4913 \)
Invariants
Degree: | $20$ |
| |
Signature: | $[12, 4]$ |
| |
Discriminant: |
\(38251599236941169123840379965550626865152\)
\(\medspace = 2^{40}\cdot 17^{13}\cdot 37^{8}\)
|
| |
Root discriminant: | \(106.94\) |
| |
Galois root discriminant: | not computed | ||
Ramified primes: |
\(2\), \(17\), \(37\)
|
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{252932}a^{16}+\frac{17953}{126466}a^{14}-\frac{1}{4}a^{13}-\frac{11609}{63233}a^{12}-\frac{1}{4}a^{11}+\frac{40097}{252932}a^{10}-\frac{1}{2}a^{9}-\frac{23589}{63233}a^{8}+\frac{1}{4}a^{7}+\frac{124231}{252932}a^{6}+\frac{1}{4}a^{5}-\frac{1323}{3418}a^{4}+\frac{1}{4}a^{3}-\frac{44239}{126466}a^{2}-\frac{1}{4}a+\frac{10405}{63233}$, $\frac{1}{252932}a^{17}-\frac{27327}{252932}a^{15}-\frac{1}{4}a^{14}-\frac{11609}{63233}a^{13}+\frac{40097}{252932}a^{11}-\frac{1}{4}a^{10}+\frac{95343}{252932}a^{9}-\frac{1}{4}a^{8}-\frac{2235}{252932}a^{7}-\frac{937}{6836}a^{5}-\frac{44239}{126466}a^{3}-\frac{1}{2}a^{2}-\frac{42423}{126466}a+\frac{1}{4}$, $\frac{1}{13\cdots 88}a^{18}+\frac{11296960850977}{17\cdots 62}a^{16}-\frac{42\cdots 35}{66\cdots 94}a^{14}-\frac{1}{4}a^{13}-\frac{49\cdots 37}{33\cdots 97}a^{12}-\frac{92\cdots 09}{13\cdots 88}a^{10}-\frac{1}{2}a^{9}-\frac{41\cdots 81}{13\cdots 88}a^{8}-\frac{1}{4}a^{7}-\frac{11\cdots 85}{13\cdots 88}a^{6}-\frac{1}{2}a^{5}-\frac{51\cdots 51}{13\cdots 88}a^{4}-\frac{1}{4}a^{3}-\frac{22\cdots 47}{13\cdots 88}a^{2}+\frac{30\cdots 99}{13\cdots 88}$, $\frac{1}{22\cdots 96}a^{19}+\frac{21\cdots 85}{11\cdots 98}a^{17}-\frac{23\cdots 23}{22\cdots 96}a^{15}-\frac{1}{4}a^{14}+\frac{12\cdots 09}{56\cdots 49}a^{13}-\frac{1}{4}a^{12}-\frac{43\cdots 71}{22\cdots 96}a^{11}-\frac{1}{4}a^{10}-\frac{10\cdots 67}{11\cdots 98}a^{9}+\frac{1}{4}a^{8}-\frac{35\cdots 75}{22\cdots 96}a^{7}-\frac{1}{4}a^{6}-\frac{90\cdots 26}{56\cdots 49}a^{5}-\frac{1}{2}a^{4}+\frac{13\cdots 89}{22\cdots 96}a^{3}+\frac{1}{4}a^{2}-\frac{99\cdots 53}{22\cdots 96}a+\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $15$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1134133401545}{19\cdots 33}a^{18}-\frac{143832130993363}{38\cdots 66}a^{16}+\frac{13\cdots 75}{19\cdots 33}a^{14}-\frac{12\cdots 35}{38\cdots 66}a^{12}-\frac{27\cdots 48}{19\cdots 33}a^{10}+\frac{23\cdots 54}{19\cdots 33}a^{8}-\frac{15\cdots 96}{19\cdots 33}a^{6}-\frac{16\cdots 45}{38\cdots 66}a^{4}-\frac{34\cdots 73}{38\cdots 66}a^{2}+\frac{14\cdots 89}{38\cdots 66}$, $\frac{37\cdots 48}{33\cdots 97}a^{18}-\frac{23\cdots 18}{33\cdots 97}a^{16}+\frac{46\cdots 32}{33\cdots 97}a^{14}-\frac{22\cdots 72}{33\cdots 97}a^{12}-\frac{78\cdots 56}{33\cdots 97}a^{10}+\frac{78\cdots 85}{33\cdots 97}a^{8}-\frac{96\cdots 08}{33\cdots 97}a^{6}-\frac{20\cdots 32}{33\cdots 97}a^{4}+\frac{14\cdots 92}{33\cdots 97}a^{2}+\frac{20\cdots 66}{33\cdots 97}$, $\frac{53764471958278}{25\cdots 69}a^{18}-\frac{31\cdots 55}{25\cdots 69}a^{16}+\frac{49\cdots 62}{25\cdots 69}a^{14}+\frac{43\cdots 78}{25\cdots 69}a^{12}-\frac{37\cdots 88}{25\cdots 69}a^{10}+\frac{69\cdots 82}{25\cdots 69}a^{8}+\frac{76\cdots 74}{25\cdots 69}a^{6}-\frac{15\cdots 07}{25\cdots 69}a^{4}-\frac{31\cdots 06}{25\cdots 69}a^{2}-\frac{21\cdots 88}{25\cdots 69}$, $\frac{61\cdots 91}{33\cdots 97}a^{18}-\frac{78\cdots 51}{66\cdots 94}a^{16}+\frac{15\cdots 51}{66\cdots 94}a^{14}-\frac{75\cdots 09}{66\cdots 94}a^{12}-\frac{35\cdots 74}{89\cdots 81}a^{10}+\frac{26\cdots 51}{66\cdots 94}a^{8}-\frac{15\cdots 21}{33\cdots 97}a^{6}-\frac{21\cdots 07}{19\cdots 33}a^{4}+\frac{50\cdots 03}{66\cdots 94}a^{2}+\frac{37\cdots 63}{66\cdots 94}$, $\frac{16\cdots 80}{33\cdots 97}a^{18}-\frac{10\cdots 69}{33\cdots 97}a^{16}+\frac{20\cdots 48}{33\cdots 97}a^{14}-\frac{10\cdots 47}{33\cdots 97}a^{12}-\frac{35\cdots 32}{33\cdots 97}a^{10}+\frac{35\cdots 69}{33\cdots 97}a^{8}-\frac{42\cdots 30}{33\cdots 97}a^{6}-\frac{95\cdots 14}{33\cdots 97}a^{4}+\frac{61\cdots 82}{33\cdots 97}a^{2}+\frac{10\cdots 55}{33\cdots 97}$, $\frac{15\cdots 26}{33\cdots 97}a^{18}-\frac{99\cdots 48}{33\cdots 97}a^{16}+\frac{19\cdots 54}{33\cdots 97}a^{14}-\frac{94\cdots 79}{33\cdots 97}a^{12}-\frac{32\cdots 16}{33\cdots 97}a^{10}+\frac{32\cdots 92}{33\cdots 97}a^{8}-\frac{41\cdots 44}{33\cdots 97}a^{6}-\frac{82\cdots 29}{33\cdots 97}a^{4}+\frac{64\cdots 24}{33\cdots 97}a^{2}+\frac{46\cdots 47}{33\cdots 97}$, $\frac{19\cdots 47}{11\cdots 98}a^{19}+\frac{1134133401545}{38\cdots 66}a^{18}-\frac{12\cdots 97}{11\cdots 98}a^{17}-\frac{143832130993363}{77\cdots 32}a^{16}+\frac{48\cdots 97}{22\cdots 96}a^{15}+\frac{13\cdots 75}{38\cdots 66}a^{14}-\frac{24\cdots 27}{22\cdots 96}a^{13}-\frac{12\cdots 35}{77\cdots 32}a^{12}-\frac{79\cdots 43}{22\cdots 96}a^{11}-\frac{13\cdots 24}{19\cdots 33}a^{10}+\frac{84\cdots 21}{22\cdots 96}a^{9}+\frac{11\cdots 27}{19\cdots 33}a^{8}-\frac{10\cdots 87}{22\cdots 96}a^{7}-\frac{76\cdots 98}{19\cdots 33}a^{6}-\frac{57\cdots 32}{56\cdots 49}a^{5}-\frac{16\cdots 45}{77\cdots 32}a^{4}+\frac{15\cdots 29}{22\cdots 96}a^{3}-\frac{34\cdots 73}{77\cdots 32}a^{2}+\frac{26\cdots 21}{22\cdots 96}a-\frac{24\cdots 77}{77\cdots 32}$, $\frac{19\cdots 47}{11\cdots 98}a^{19}-\frac{1134133401545}{38\cdots 66}a^{18}-\frac{12\cdots 97}{11\cdots 98}a^{17}+\frac{143832130993363}{77\cdots 32}a^{16}+\frac{48\cdots 97}{22\cdots 96}a^{15}-\frac{13\cdots 75}{38\cdots 66}a^{14}-\frac{24\cdots 27}{22\cdots 96}a^{13}+\frac{12\cdots 35}{77\cdots 32}a^{12}-\frac{79\cdots 43}{22\cdots 96}a^{11}+\frac{13\cdots 24}{19\cdots 33}a^{10}+\frac{84\cdots 21}{22\cdots 96}a^{9}-\frac{11\cdots 27}{19\cdots 33}a^{8}-\frac{10\cdots 87}{22\cdots 96}a^{7}+\frac{76\cdots 98}{19\cdots 33}a^{6}-\frac{57\cdots 32}{56\cdots 49}a^{5}+\frac{16\cdots 45}{77\cdots 32}a^{4}+\frac{15\cdots 29}{22\cdots 96}a^{3}+\frac{34\cdots 73}{77\cdots 32}a^{2}+\frac{26\cdots 21}{22\cdots 96}a+\frac{24\cdots 77}{77\cdots 32}$, $\frac{67\cdots 91}{11\cdots 98}a^{19}-\frac{85\cdots 15}{13\cdots 88}a^{18}-\frac{86\cdots 09}{22\cdots 96}a^{17}+\frac{57\cdots 55}{13\cdots 88}a^{16}+\frac{16\cdots 85}{22\cdots 96}a^{15}-\frac{12\cdots 29}{13\cdots 88}a^{14}-\frac{42\cdots 01}{11\cdots 98}a^{13}+\frac{41\cdots 87}{66\cdots 94}a^{12}-\frac{13\cdots 95}{11\cdots 98}a^{11}+\frac{13\cdots 77}{13\cdots 88}a^{10}+\frac{28\cdots 37}{22\cdots 96}a^{9}-\frac{13\cdots 33}{66\cdots 94}a^{8}-\frac{37\cdots 83}{22\cdots 96}a^{7}+\frac{11\cdots 65}{33\cdots 97}a^{6}-\frac{38\cdots 45}{11\cdots 98}a^{5}+\frac{76\cdots 65}{13\cdots 88}a^{4}+\frac{13\cdots 20}{56\cdots 49}a^{3}-\frac{59\cdots 65}{13\cdots 88}a^{2}+\frac{62\cdots 21}{22\cdots 96}a-\frac{25\cdots 59}{66\cdots 94}$, $\frac{67\cdots 91}{11\cdots 98}a^{19}+\frac{85\cdots 15}{13\cdots 88}a^{18}-\frac{86\cdots 09}{22\cdots 96}a^{17}-\frac{57\cdots 55}{13\cdots 88}a^{16}+\frac{16\cdots 85}{22\cdots 96}a^{15}+\frac{12\cdots 29}{13\cdots 88}a^{14}-\frac{42\cdots 01}{11\cdots 98}a^{13}-\frac{41\cdots 87}{66\cdots 94}a^{12}-\frac{13\cdots 95}{11\cdots 98}a^{11}-\frac{13\cdots 77}{13\cdots 88}a^{10}+\frac{28\cdots 37}{22\cdots 96}a^{9}+\frac{13\cdots 33}{66\cdots 94}a^{8}-\frac{37\cdots 83}{22\cdots 96}a^{7}-\frac{11\cdots 65}{33\cdots 97}a^{6}-\frac{38\cdots 45}{11\cdots 98}a^{5}-\frac{76\cdots 65}{13\cdots 88}a^{4}+\frac{13\cdots 20}{56\cdots 49}a^{3}+\frac{59\cdots 65}{13\cdots 88}a^{2}+\frac{62\cdots 21}{22\cdots 96}a+\frac{25\cdots 59}{66\cdots 94}$, $\frac{63\cdots 08}{33\cdots 97}a^{18}-\frac{40\cdots 69}{33\cdots 97}a^{16}+\frac{81\cdots 82}{33\cdots 97}a^{14}-\frac{88\cdots 25}{66\cdots 94}a^{12}-\frac{23\cdots 53}{66\cdots 94}a^{10}+\frac{14\cdots 47}{33\cdots 97}a^{8}-\frac{45\cdots 29}{66\cdots 94}a^{6}-\frac{71\cdots 87}{66\cdots 94}a^{4}+\frac{77\cdots 57}{66\cdots 94}a^{2}+\frac{64\cdots 21}{66\cdots 94}$, $\frac{10\cdots 19}{22\cdots 96}a^{19}-\frac{45\cdots 65}{13\cdots 88}a^{18}-\frac{16\cdots 42}{56\cdots 49}a^{17}+\frac{29\cdots 59}{13\cdots 88}a^{16}+\frac{13\cdots 77}{22\cdots 96}a^{15}-\frac{60\cdots 59}{13\cdots 88}a^{14}-\frac{16\cdots 51}{56\cdots 49}a^{13}+\frac{34\cdots 65}{13\cdots 88}a^{12}-\frac{53\cdots 07}{56\cdots 49}a^{11}+\frac{83\cdots 11}{13\cdots 88}a^{10}+\frac{15\cdots 71}{15\cdots 77}a^{9}-\frac{28\cdots 38}{33\cdots 97}a^{8}-\frac{29\cdots 53}{22\cdots 96}a^{7}+\frac{17\cdots 09}{13\cdots 88}a^{6}-\frac{62\cdots 87}{22\cdots 96}a^{5}+\frac{27\cdots 83}{13\cdots 88}a^{4}+\frac{42\cdots 85}{22\cdots 96}a^{3}-\frac{75\cdots 31}{33\cdots 97}a^{2}+\frac{20\cdots 71}{56\cdots 49}a-\frac{62\cdots 05}{33\cdots 97}$, $\frac{97\cdots 19}{22\cdots 96}a^{19}+\frac{16\cdots 89}{13\cdots 88}a^{18}-\frac{57\cdots 59}{22\cdots 96}a^{17}-\frac{48\cdots 23}{66\cdots 94}a^{16}+\frac{94\cdots 81}{22\cdots 96}a^{15}+\frac{81\cdots 85}{66\cdots 94}a^{14}-\frac{19\cdots 53}{22\cdots 96}a^{13}-\frac{96\cdots 24}{33\cdots 97}a^{12}-\frac{60\cdots 55}{56\cdots 49}a^{11}-\frac{20\cdots 19}{66\cdots 94}a^{10}+\frac{20\cdots 38}{56\cdots 49}a^{9}+\frac{16\cdots 11}{13\cdots 88}a^{8}-\frac{21\cdots 05}{22\cdots 96}a^{7}+\frac{17\cdots 81}{13\cdots 88}a^{6}-\frac{59\cdots 35}{11\cdots 98}a^{5}-\frac{74\cdots 93}{33\cdots 97}a^{4}+\frac{39\cdots 31}{56\cdots 49}a^{3}+\frac{13\cdots 27}{13\cdots 88}a^{2}-\frac{10\cdots 61}{22\cdots 96}a+\frac{23\cdots 77}{66\cdots 94}$, $\frac{34\cdots 81}{17\cdots 92}a^{19}+\frac{11\cdots 25}{66\cdots 94}a^{18}-\frac{54\cdots 74}{43\cdots 73}a^{17}-\frac{14\cdots 37}{13\cdots 88}a^{16}+\frac{10\cdots 13}{43\cdots 73}a^{15}+\frac{27\cdots 09}{13\cdots 88}a^{14}-\frac{22\cdots 07}{17\cdots 92}a^{13}-\frac{32\cdots 98}{33\cdots 97}a^{12}-\frac{16\cdots 93}{43\cdots 73}a^{11}-\frac{47\cdots 67}{13\cdots 88}a^{10}+\frac{76\cdots 67}{17\cdots 92}a^{9}+\frac{45\cdots 77}{13\cdots 88}a^{8}-\frac{25\cdots 28}{43\cdots 73}a^{7}-\frac{54\cdots 07}{13\cdots 88}a^{6}-\frac{50\cdots 22}{43\cdots 73}a^{5}-\frac{11\cdots 83}{13\cdots 88}a^{4}+\frac{36\cdots 48}{43\cdots 73}a^{3}+\frac{22\cdots 21}{33\cdots 97}a^{2}+\frac{24\cdots 95}{86\cdots 46}a+\frac{29\cdots 90}{33\cdots 97}$, $\frac{19\cdots 07}{11\cdots 98}a^{19}+\frac{91\cdots 71}{66\cdots 94}a^{18}-\frac{60\cdots 72}{56\cdots 49}a^{17}-\frac{29\cdots 20}{33\cdots 97}a^{16}+\frac{46\cdots 77}{22\cdots 96}a^{15}+\frac{54\cdots 62}{33\cdots 97}a^{14}-\frac{53\cdots 58}{56\cdots 49}a^{13}-\frac{98\cdots 61}{13\cdots 88}a^{12}-\frac{46\cdots 61}{11\cdots 98}a^{11}-\frac{45\cdots 21}{13\cdots 88}a^{10}+\frac{77\cdots 59}{22\cdots 96}a^{9}+\frac{90\cdots 42}{33\cdots 97}a^{8}-\frac{13\cdots 42}{56\cdots 49}a^{7}-\frac{21\cdots 05}{13\cdots 88}a^{6}-\frac{26\cdots 11}{22\cdots 96}a^{5}-\frac{12\cdots 55}{13\cdots 88}a^{4}-\frac{17\cdots 67}{11\cdots 98}a^{3}-\frac{23\cdots 97}{13\cdots 88}a^{2}+\frac{47\cdots 32}{56\cdots 49}a-\frac{82\cdots 25}{13\cdots 88}$
|
| |
Regulator: | \( 12316530469600 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{4}\cdot 12316530469600 \cdot 2}{2\cdot\sqrt{38251599236941169123840379965550626865152}}\cr\approx \mathstrut & 0.402015694878244 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.(C_2\times F_5)$ (as 20T514):
A solvable group of order 20480 |
The 74 conjugacy class representatives for $C_2^9.(C_2\times F_5)$ |
Character table for $C_2^9.(C_2\times F_5)$ |
Intermediate fields
\(\Q(\sqrt{2}) \), 5.5.6725897.1, 10.10.1482348640816627712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 20 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Minimal sibling: | 20.12.38251599236941169123840379965550626865152.6 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }^{2}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.5.4.40b1.1 | $x^{20} + 4 x^{17} + 4 x^{15} + 6 x^{14} + 12 x^{12} + 4 x^{11} + 8 x^{10} + 12 x^{9} + x^{8} + 16 x^{7} + 4 x^{6} + 12 x^{5} + 8 x^{4} + 12 x^{2} + 9$ | $4$ | $5$ | $40$ | 20T3 | not computed |
\(17\)
| 17.1.2.1a1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
17.1.4.3a1.3 | $x^{4} + 153$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
17.1.4.3a1.3 | $x^{4} + 153$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
17.2.4.6a1.2 | $x^{8} + 64 x^{7} + 1548 x^{6} + 16960 x^{5} + 74806 x^{4} + 50880 x^{3} + 13932 x^{2} + 1728 x + 98$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(37\)
| 37.4.1.0a1.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
37.2.2.2a1.1 | $x^{4} + 66 x^{3} + 1093 x^{2} + 169 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
37.2.2.2a1.1 | $x^{4} + 66 x^{3} + 1093 x^{2} + 169 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
37.4.2.4a1.2 | $x^{8} + 12 x^{6} + 48 x^{5} + 40 x^{4} + 288 x^{3} + 600 x^{2} + 96 x + 41$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |