Normalized defining polynomial
\( x^{20} - 4x^{18} + 11x^{14} - x^{12} - 4x^{10} - 9x^{8} - 9x^{6} + 10x^{4} + 7x^{2} - 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[10, 5]$ |
| |
| Discriminant: |
\(-5991589106524593640000000000\)
\(\medspace = -\,2^{12}\cdot 5^{10}\cdot 29^{2}\cdot 13345751^{2}\)
|
| |
| Root discriminant: | \(24.48\) |
| |
| Galois root discriminant: | $2^{63/32}5^{1/2}29^{1/2}13345751^{1/2}\approx 172190.15379250972$ | ||
| Ramified primes: |
\(2\), \(5\), \(29\), \(13345751\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{82}a^{18}-\frac{3}{41}a^{16}-\frac{29}{82}a^{14}-\frac{1}{2}a^{13}+\frac{14}{41}a^{12}-\frac{1}{2}a^{11}+\frac{25}{82}a^{10}-\frac{1}{2}a^{9}-\frac{13}{82}a^{8}-\frac{12}{41}a^{6}-\frac{1}{41}a^{4}-\frac{1}{2}a^{3}-\frac{27}{82}a^{2}-\frac{1}{2}a+\frac{10}{41}$, $\frac{1}{82}a^{19}-\frac{3}{41}a^{17}-\frac{29}{82}a^{15}-\frac{1}{2}a^{14}+\frac{14}{41}a^{13}-\frac{1}{2}a^{12}+\frac{25}{82}a^{11}-\frac{1}{2}a^{10}-\frac{13}{82}a^{9}-\frac{12}{41}a^{7}-\frac{1}{41}a^{5}-\frac{1}{2}a^{4}-\frac{27}{82}a^{3}-\frac{1}{2}a^{2}+\frac{10}{41}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $14$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{14}{41}a^{18}-\frac{43}{41}a^{16}-\frac{37}{41}a^{14}+\frac{105}{41}a^{12}+\frac{104}{41}a^{10}+\frac{23}{41}a^{8}-\frac{90}{41}a^{6}-\frac{151}{41}a^{4}-\frac{50}{41}a^{2}+\frac{75}{41}$, $\frac{51}{41}a^{18}-\frac{224}{41}a^{16}+\frac{120}{41}a^{14}+\frac{403}{41}a^{12}-\frac{242}{41}a^{10}+\frac{116}{41}a^{8}-\frac{404}{41}a^{6}-\frac{143}{41}a^{4}+\frac{345}{41}a^{2}-\frac{87}{41}$, $\frac{20}{41}a^{19}-\frac{120}{41}a^{17}+\frac{158}{41}a^{15}+\frac{191}{41}a^{13}-\frac{320}{41}a^{11}-\frac{55}{41}a^{9}-\frac{316}{41}a^{7}+\frac{124}{41}a^{5}+\frac{485}{41}a^{3}+\frac{72}{41}a$, $\frac{60}{41}a^{19}-\frac{278}{41}a^{17}+\frac{187}{41}a^{15}+\frac{491}{41}a^{13}-\frac{345}{41}a^{11}+\frac{81}{41}a^{9}-\frac{620}{41}a^{7}-\frac{161}{41}a^{5}+\frac{553}{41}a^{3}+\frac{52}{41}a$, $\frac{8}{41}a^{18}-\frac{89}{41}a^{16}+\frac{219}{41}a^{14}+\frac{60}{41}a^{12}-\frac{415}{41}a^{10}-\frac{22}{41}a^{8}-\frac{274}{41}a^{6}+\frac{353}{41}a^{4}+\frac{399}{41}a^{2}-\frac{86}{41}$, $\frac{26}{41}a^{19}-\frac{156}{41}a^{17}+\frac{230}{41}a^{15}+\frac{154}{41}a^{13}-\frac{416}{41}a^{11}+\frac{113}{41}a^{9}-\frac{337}{41}a^{7}+\frac{235}{41}a^{5}+\frac{364}{41}a^{3}-\frac{136}{41}a$, $\frac{32}{41}a^{19}-\frac{27}{82}a^{18}-\frac{151}{41}a^{17}+\frac{121}{82}a^{16}+\frac{235}{82}a^{15}-\frac{39}{41}a^{14}+\frac{240}{41}a^{13}-\frac{91}{41}a^{12}-\frac{225}{41}a^{11}+\frac{52}{41}a^{10}+\frac{193}{82}a^{9}-\frac{50}{41}a^{8}-\frac{317}{41}a^{7}+\frac{279}{82}a^{6}-\frac{5}{82}a^{5}+\frac{95}{82}a^{4}+\frac{284}{41}a^{3}-\frac{66}{41}a^{2}-\frac{155}{82}a+\frac{75}{82}$, $\frac{32}{41}a^{19}+\frac{27}{82}a^{18}-\frac{151}{41}a^{17}-\frac{121}{82}a^{16}+\frac{235}{82}a^{15}+\frac{39}{41}a^{14}+\frac{240}{41}a^{13}+\frac{91}{41}a^{12}-\frac{225}{41}a^{11}-\frac{52}{41}a^{10}+\frac{193}{82}a^{9}+\frac{50}{41}a^{8}-\frac{317}{41}a^{7}-\frac{279}{82}a^{6}-\frac{5}{82}a^{5}-\frac{95}{82}a^{4}+\frac{284}{41}a^{3}+\frac{66}{41}a^{2}-\frac{155}{82}a-\frac{75}{82}$, $\frac{7}{82}a^{19}-\frac{32}{41}a^{18}-\frac{1}{82}a^{17}+\frac{151}{41}a^{16}-\frac{121}{82}a^{15}-\frac{235}{82}a^{14}+\frac{155}{82}a^{13}-\frac{240}{41}a^{12}+\frac{175}{82}a^{11}+\frac{225}{41}a^{10}-\frac{66}{41}a^{9}-\frac{193}{82}a^{8}+\frac{37}{82}a^{7}+\frac{317}{41}a^{6}-\frac{171}{41}a^{5}+\frac{5}{82}a^{4}-\frac{25}{82}a^{3}-\frac{284}{41}a^{2}+\frac{181}{82}a+\frac{155}{82}$, $\frac{3}{41}a^{19}+\frac{47}{82}a^{18}+\frac{23}{41}a^{17}-\frac{141}{41}a^{16}-\frac{128}{41}a^{15}+\frac{359}{82}a^{14}+\frac{45}{82}a^{13}+\frac{248}{41}a^{12}+\frac{519}{82}a^{11}-\frac{793}{82}a^{10}+\frac{45}{82}a^{9}-\frac{119}{82}a^{8}+\frac{92}{41}a^{7}-\frac{359}{41}a^{6}-\frac{252}{41}a^{5}+\frac{117}{41}a^{4}-\frac{449}{82}a^{3}+\frac{1109}{82}a^{2}+\frac{161}{82}a-\frac{22}{41}$, $\frac{27}{82}a^{19}+\frac{65}{82}a^{18}-\frac{121}{82}a^{17}-\frac{267}{82}a^{16}-\frac{2}{41}a^{15}+\frac{83}{82}a^{14}+\frac{469}{82}a^{13}+\frac{254}{41}a^{12}-\frac{63}{82}a^{11}-\frac{69}{41}a^{10}-\frac{433}{82}a^{9}+\frac{139}{82}a^{8}-\frac{443}{82}a^{7}-\frac{535}{82}a^{6}-\frac{423}{82}a^{5}-\frac{147}{41}a^{4}+\frac{583}{82}a^{3}+\frac{209}{41}a^{2}+\frac{270}{41}a+\frac{35}{41}$, $\frac{35}{41}a^{19}-\frac{9}{41}a^{18}-\frac{128}{41}a^{17}+\frac{67}{82}a^{16}-\frac{21}{82}a^{15}-\frac{11}{82}a^{14}+\frac{525}{82}a^{13}-\frac{47}{41}a^{12}+\frac{69}{82}a^{11}+\frac{1}{82}a^{10}+\frac{119}{41}a^{9}-\frac{135}{82}a^{8}-\frac{225}{41}a^{7}+\frac{63}{82}a^{6}-\frac{509}{82}a^{5}+\frac{77}{82}a^{4}+\frac{119}{82}a^{3}+\frac{117}{82}a^{2}-\frac{38}{41}a+\frac{173}{82}$, $\frac{11}{82}a^{19}+\frac{17}{82}a^{18}-\frac{33}{41}a^{17}-\frac{61}{82}a^{16}+\frac{25}{41}a^{15}-\frac{1}{82}a^{14}+\frac{113}{41}a^{13}+\frac{107}{82}a^{12}-\frac{135}{82}a^{11}+\frac{15}{82}a^{10}-\frac{133}{41}a^{9}+\frac{33}{41}a^{8}-\frac{132}{41}a^{7}-\frac{121}{82}a^{6}-\frac{63}{82}a^{5}-\frac{17}{41}a^{4}+\frac{441}{82}a^{3}+\frac{33}{82}a^{2}+\frac{261}{82}a-\frac{29}{82}$
|
| |
| Regulator: | \( 2835601.07584 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{10}\cdot(2\pi)^{5}\cdot 2835601.07584 \cdot 1}{2\cdot\sqrt{5991589106524593640000000000}}\cr\approx \mathstrut & 0.183672198319 \end{aligned}\] (assuming GRH)
Galois group
$C_2^8.S_5^2:D_4$ (as 20T1045):
| A non-solvable group of order 29491200 |
| The 702 conjugacy class representatives for $C_2^8.S_5^2:D_4$ |
| Character table for $C_2^8.S_5^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.1209458684375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | $20$ | ${\href{/padicField/11.5.0.1}{5} }^{2}{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.10.0.1}{10} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | $20$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.8.0.1}{8} }$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(5\)
| 5.10.2.10a1.2 | $x^{20} + 6 x^{15} + 6 x^{14} + 4 x^{13} + 8 x^{12} + 2 x^{11} + 13 x^{10} + 18 x^{9} + 21 x^{8} + 36 x^{7} + 34 x^{6} + 34 x^{5} + 32 x^{4} + 16 x^{3} + 17 x^{2} + 4 x + 9$ | $2$ | $10$ | $10$ | 20T3 | not computed |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 29.2.2.2a1.2 | $x^{4} + 48 x^{3} + 580 x^{2} + 96 x + 33$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(13345751\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |