Properties

Label 20T1045
Order \(29491200\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $1045$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2)(3,11,8,15,20,4,12,7,16,19)(5,9,13,18,6,10,14,17), (1,4,9,19,17,12,5,15,2,3,10,20,18,11,6,16)(7,14,8,13), (1,6,13,2,5,14)(9,10)(11,20,12,19)(17,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
28800:  $S_5^2 \wr C_2$
57600:  20T655
115200:  20T781
7372800:  20T1022
14745600:  20T1038

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $S_5^2 \wr C_2$

Low degree siblings

20T1045 x 7, 40T182661 x 4, 40T182662 x 8, 40T182663 x 8, 40T182675 x 4, 40T182686 x 4, 40T182721 x 8, 40T182740 x 4, 40T182741 x 4, 40T182756 x 8, 40T182757 x 8, 40T182758 x 8, 40T182759 x 8, 40T182760 x 8, 40T182761 x 8, 40T182762 x 8, 40T182763 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 702 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $29491200=2^{17} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.