Normalized defining polynomial
\( x^{20} + 32x^{16} - 8x^{14} + 498x^{12} - 112x^{10} + 2540x^{8} - 248x^{6} + 6706x^{4} - 10688x^{2} + 12800 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[0, 10]$ |
| |
| Discriminant: |
\(86673392150966032007026116292247552\)
\(\medspace = 2^{69}\cdot 59^{8}\)
|
| |
| Root discriminant: | \(55.83\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(59\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 10.0.813182331387904.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5}a^{15}-\frac{2}{5}a^{13}-\frac{2}{5}a^{11}+\frac{2}{5}a^{9}+\frac{2}{5}a^{5}+\frac{1}{5}a^{3}-\frac{1}{5}a$, $\frac{1}{10}a^{16}-\frac{1}{5}a^{14}-\frac{1}{5}a^{12}+\frac{1}{5}a^{10}+\frac{1}{5}a^{6}-\frac{2}{5}a^{4}+\frac{2}{5}a^{2}$, $\frac{1}{40}a^{17}-\frac{2}{5}a^{13}+\frac{1}{5}a^{11}-\frac{3}{20}a^{9}-\frac{1}{5}a^{7}-\frac{1}{2}a^{5}+\frac{2}{5}a^{3}+\frac{9}{20}a$, $\frac{1}{45\cdots 60}a^{18}-\frac{1}{80}a^{17}+\frac{700026280075151}{28\cdots 60}a^{16}-\frac{22\cdots 13}{47\cdots 60}a^{14}+\frac{1}{5}a^{13}-\frac{23\cdots 73}{56\cdots 20}a^{12}-\frac{1}{10}a^{11}+\frac{68\cdots 53}{22\cdots 80}a^{10}-\frac{17}{40}a^{9}+\frac{45\cdots 49}{94\cdots 20}a^{8}-\frac{2}{5}a^{7}-\frac{47\cdots 57}{11\cdots 40}a^{6}+\frac{1}{4}a^{5}+\frac{29\cdots 49}{56\cdots 20}a^{4}+\frac{3}{10}a^{3}+\frac{23\cdots 81}{22\cdots 80}a^{2}-\frac{9}{40}a-\frac{539838157322683}{28\cdots 96}$, $\frac{1}{18\cdots 40}a^{19}+\frac{700026280075151}{11\cdots 40}a^{17}-\frac{1}{20}a^{16}+\frac{307971594056423}{37\cdots 28}a^{15}-\frac{2}{5}a^{14}+\frac{11\cdots 63}{45\cdots 36}a^{13}-\frac{2}{5}a^{12}+\frac{77\cdots 81}{18\cdots 44}a^{11}+\frac{2}{5}a^{10}+\frac{786130375153421}{37\cdots 80}a^{9}-\frac{1}{2}a^{8}-\frac{16\cdots 97}{45\cdots 60}a^{7}+\frac{2}{5}a^{6}-\frac{76\cdots 39}{22\cdots 80}a^{5}+\frac{1}{5}a^{4}+\frac{36\cdots 45}{18\cdots 44}a^{3}-\frac{1}{5}a^{2}+\frac{140368721968681}{56\cdots 20}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{4}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{4}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -\frac{693560855}{14557177871616} a^{18} - \frac{145025713}{909823616976} a^{16} - \frac{275965573}{151637269496} a^{14} - \frac{7730329705}{1819647233952} a^{12} - \frac{231005311007}{7278588935808} a^{10} - \frac{17334870123}{303274538992} a^{8} - \frac{880449604813}{3639294467904} a^{6} - \frac{274172346959}{1819647233952} a^{4} - \frac{4884517123967}{7278588935808} a^{2} + \frac{89143772641}{454911808488} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{109435235129}{295787448810635}a^{18}-\frac{206213836441}{295787448810635}a^{16}+\frac{3653725641393}{295787448810635}a^{14}-\frac{7212650465086}{295787448810635}a^{12}+\frac{59251582458044}{295787448810635}a^{10}-\frac{104275644652537}{295787448810635}a^{8}+\frac{311601899090748}{295787448810635}a^{6}-\frac{321940368870102}{295787448810635}a^{4}+\frac{176867616995648}{295787448810635}a^{2}+\frac{16568929007201}{59157489762127}$, $\frac{16175483725381}{22\cdots 80}a^{18}-\frac{3622675768163}{14\cdots 80}a^{16}-\frac{5223779909703}{23\cdots 80}a^{14}-\frac{197299201326299}{28\cdots 60}a^{12}-\frac{778434961458041}{22\cdots 68}a^{10}-\frac{322082934787409}{47\cdots 60}a^{8}-\frac{10\cdots 59}{56\cdots 20}a^{6}-\frac{92\cdots 33}{28\cdots 60}a^{4}-\frac{79\cdots 53}{22\cdots 68}a^{2}-\frac{36351416769401}{14\cdots 48}$, $\frac{261069948529561}{18\cdots 40}a^{19}+\frac{256992760117259}{45\cdots 60}a^{18}-\frac{115061481834527}{11\cdots 40}a^{17}+\frac{14456880645997}{28\cdots 60}a^{16}-\frac{121001849037963}{18\cdots 40}a^{15}+\frac{81486951613537}{47\cdots 60}a^{14}-\frac{67\cdots 51}{22\cdots 80}a^{13}+\frac{695182395547381}{56\cdots 20}a^{12}-\frac{99\cdots 61}{90\cdots 20}a^{11}+\frac{11\cdots 31}{45\cdots 36}a^{10}-\frac{16\cdots 21}{37\cdots 80}a^{9}+\frac{20\cdots 31}{94\cdots 20}a^{8}-\frac{39\cdots 71}{45\cdots 60}a^{7}+\frac{13\cdots 61}{11\cdots 40}a^{6}-\frac{41\cdots 93}{22\cdots 80}a^{5}+\frac{76\cdots 47}{56\cdots 20}a^{4}-\frac{19\cdots 17}{90\cdots 20}a^{3}+\frac{21\cdots 87}{45\cdots 36}a^{2}-\frac{18\cdots 61}{56\cdots 20}a-\frac{692394330773249}{28\cdots 96}$, $\frac{261069948529561}{18\cdots 40}a^{19}-\frac{256992760117259}{45\cdots 60}a^{18}-\frac{115061481834527}{11\cdots 40}a^{17}-\frac{14456880645997}{28\cdots 60}a^{16}-\frac{121001849037963}{18\cdots 40}a^{15}-\frac{81486951613537}{47\cdots 60}a^{14}-\frac{67\cdots 51}{22\cdots 80}a^{13}-\frac{695182395547381}{56\cdots 20}a^{12}-\frac{99\cdots 61}{90\cdots 20}a^{11}-\frac{11\cdots 31}{45\cdots 36}a^{10}-\frac{16\cdots 21}{37\cdots 80}a^{9}-\frac{20\cdots 31}{94\cdots 20}a^{8}-\frac{39\cdots 71}{45\cdots 60}a^{7}-\frac{13\cdots 61}{11\cdots 40}a^{6}-\frac{41\cdots 93}{22\cdots 80}a^{5}-\frac{76\cdots 47}{56\cdots 20}a^{4}-\frac{19\cdots 17}{90\cdots 20}a^{3}-\frac{21\cdots 87}{45\cdots 36}a^{2}-\frac{18\cdots 61}{56\cdots 20}a+\frac{692394330773249}{28\cdots 96}$, $\frac{195570034785817}{18\cdots 40}a^{19}-\frac{29226231258077}{45\cdots 60}a^{18}+\frac{32381783820577}{11\cdots 40}a^{17}-\frac{31041722873899}{28\cdots 60}a^{16}-\frac{9011971177423}{37\cdots 28}a^{15}-\frac{2787518475803}{946519836194032}a^{14}+\frac{19\cdots 17}{22\cdots 80}a^{13}-\frac{14\cdots 71}{56\cdots 20}a^{12}-\frac{26\cdots 69}{90\cdots 20}a^{11}-\frac{86\cdots 33}{22\cdots 80}a^{10}+\frac{904596772865679}{75\cdots 56}a^{9}-\frac{28\cdots 73}{94\cdots 20}a^{8}+\frac{65\cdots 01}{45\cdots 60}a^{7}-\frac{20\cdots 07}{11\cdots 40}a^{6}+\frac{44\cdots 23}{22\cdots 80}a^{5}-\frac{24\cdots 57}{56\cdots 20}a^{4}-\frac{62\cdots 93}{90\cdots 20}a^{3}+\frac{16\cdots 59}{22\cdots 80}a^{2}+\frac{40\cdots 59}{56\cdots 20}a-\frac{37\cdots 45}{28\cdots 96}$, $\frac{58404997420829}{36\cdots 88}a^{19}-\frac{143519770570771}{45\cdots 60}a^{18}-\frac{34923117069431}{11\cdots 40}a^{17}-\frac{2971385386997}{28\cdots 60}a^{16}-\frac{86344835349427}{18\cdots 40}a^{15}-\frac{6771368653269}{946519836194032}a^{14}-\frac{252445350972067}{45\cdots 36}a^{13}+\frac{193182339345427}{56\cdots 20}a^{12}-\frac{57\cdots 97}{90\cdots 20}a^{11}-\frac{19\cdots 79}{22\cdots 80}a^{10}-\frac{21\cdots 01}{37\cdots 80}a^{9}+\frac{547311747951001}{94\cdots 20}a^{8}-\frac{65\cdots 03}{45\cdots 60}a^{7}-\frac{46\cdots 21}{11\cdots 40}a^{6}+\frac{41\cdots 27}{22\cdots 80}a^{5}+\frac{31\cdots 49}{56\cdots 20}a^{4}-\frac{22\cdots 69}{90\cdots 20}a^{3}-\frac{24\cdots 03}{22\cdots 80}a^{2}+\frac{27\cdots 87}{56\cdots 20}a+\frac{16\cdots 05}{28\cdots 96}$, $\frac{24\cdots 99}{18\cdots 40}a^{19}-\frac{78243964604549}{90\cdots 72}a^{18}-\frac{88888235599373}{11\cdots 40}a^{17}-\frac{1424473050527}{28\cdots 60}a^{16}-\frac{767573269759233}{18\cdots 40}a^{15}-\frac{134735566556971}{47\cdots 60}a^{14}-\frac{511409324788945}{45\cdots 36}a^{13}+\frac{14811220399513}{56\cdots 20}a^{12}-\frac{54\cdots 43}{90\cdots 20}a^{11}-\frac{96\cdots 37}{22\cdots 80}a^{10}-\frac{50\cdots 43}{37\cdots 80}a^{9}+\frac{39199578400847}{18\cdots 64}a^{8}-\frac{11\cdots 29}{45\cdots 60}a^{7}-\frac{24\cdots 51}{11\cdots 40}a^{6}-\frac{14\cdots 11}{22\cdots 80}a^{5}+\frac{31\cdots 71}{56\cdots 20}a^{4}-\frac{56\cdots 51}{90\cdots 20}a^{3}-\frac{43\cdots 49}{22\cdots 80}a^{2}+\frac{75\cdots 69}{56\cdots 20}a+\frac{38\cdots 51}{28\cdots 96}$, $\frac{698172539711701}{30\cdots 40}a^{19}+\frac{91934805730939}{37\cdots 80}a^{18}+\frac{33840452631819}{18\cdots 40}a^{17}+\frac{266932414401}{23\cdots 80}a^{16}+\frac{137948496730361}{18\cdots 64}a^{15}+\frac{88913358411987}{11\cdots 40}a^{14}+\frac{12\cdots 79}{37\cdots 80}a^{13}-\frac{19093192663071}{946519836194032}a^{12}+\frac{16\cdots 57}{15\cdots 20}a^{11}+\frac{21\cdots 99}{18\cdots 40}a^{10}+\frac{18\cdots 43}{37\cdots 28}a^{9}-\frac{640010572441907}{23\cdots 80}a^{8}+\frac{40\cdots 47}{75\cdots 60}a^{7}+\frac{48\cdots 73}{94\cdots 20}a^{6}+\frac{66\cdots 41}{37\cdots 80}a^{5}-\frac{11\cdots 13}{946519836194032}a^{4}+\frac{20\cdots 49}{15\cdots 20}a^{3}+\frac{18\cdots 63}{18\cdots 40}a^{2}-\frac{21\cdots 27}{94\cdots 20}a-\frac{67\cdots 21}{236629959048508}$, $\frac{753959087870047}{15\cdots 20}a^{19}-\frac{9785258535589}{37\cdots 28}a^{18}+\frac{77293943935751}{94\cdots 20}a^{17}+\frac{11266052481333}{11\cdots 40}a^{16}-\frac{723007434982023}{47\cdots 60}a^{15}-\frac{65461523265473}{591574897621270}a^{14}+\frac{50\cdots 03}{18\cdots 40}a^{13}+\frac{846788114660273}{23\cdots 80}a^{12}-\frac{17\cdots 87}{75\cdots 60}a^{11}-\frac{20\cdots 77}{94\cdots 20}a^{10}+\frac{31\cdots 19}{94\cdots 20}a^{9}+\frac{14\cdots 09}{236629959048508}a^{8}-\frac{32\cdots 17}{37\cdots 80}a^{7}-\frac{85\cdots 31}{47\cdots 60}a^{6}+\frac{41\cdots 29}{18\cdots 40}a^{5}+\frac{77\cdots 11}{23\cdots 80}a^{4}+\frac{70\cdots 61}{75\cdots 60}a^{3}-\frac{29\cdots 89}{94\cdots 20}a^{2}-\frac{63\cdots 67}{47\cdots 60}a+\frac{15\cdots 61}{118314979524254}$
|
| |
| Regulator: | \( 9426852324.645239 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 9426852324.645239 \cdot 4}{4\cdot\sqrt{86673392150966032007026116292247552}}\cr\approx \mathstrut & 3.07059466022830 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.(C_2\times F_5)$ (as 20T514):
| A solvable group of order 20480 |
| The 74 conjugacy class representatives for $C_2^9.(C_2\times F_5)$ |
| Character table for $C_2^9.(C_2\times F_5)$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.7129088.1, 10.0.813182331387904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{5}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }^{2}$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.16.65c1.80 | $x^{16} + 16 x^{13} + 16 x^{11} + 16 x^{9} + 2 x^{8} + 4 x^{4} + 8 x^{2} + 18$ | $16$ | $1$ | $65$ | $C_2^5:C_8$ | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}]$$ | |
|
\(59\)
| 59.4.1.0a1.1 | $x^{4} + 2 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
| 59.2.2.2a1.1 | $x^{4} + 116 x^{3} + 3368 x^{2} + 291 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 59.2.2.2a1.1 | $x^{4} + 116 x^{3} + 3368 x^{2} + 291 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 59.2.2.2a1.1 | $x^{4} + 116 x^{3} + 3368 x^{2} + 291 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 59.2.2.2a1.1 | $x^{4} + 116 x^{3} + 3368 x^{2} + 291 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |