Properties

Label 20.0.565...000.2
Degree $20$
Signature $[0, 10]$
Discriminant $5.658\times 10^{63}$
Root discriminant \(1540.40\)
Ramified primes $2,5,197$
Class number not computed
Class group not computed
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110)
 
Copy content gp:K = bnfinit(y^20 + 884*y^18 - 120*y^17 + 320632*y^16 - 47040*y^15 + 62498912*y^14 - 845280*y^13 + 7170696115*y^12 + 2029080960*y^11 + 497966799168*y^10 + 363381965160*y^9 + 20788727497872*y^8 + 25825943410560*y^7 + 504577565508196*y^6 + 823130089914720*y^5 + 6675937179144981*y^4 + 10233463840763040*y^3 + 40465493406379000*y^2 + 32655100199688840*y + 23192516886401110, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110)
 

\( x^{20} + 884 x^{18} - 120 x^{17} + 320632 x^{16} - 47040 x^{15} + 62498912 x^{14} + \cdots + 23\!\cdots\!10 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 10]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(5657954428456562353084024324409254309146809860096000000000000000\) \(\medspace = 2^{55}\cdot 5^{15}\cdot 197^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(1540.40\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}5^{3/4}197^{4/5}\approx 1540.3980928551418$
Ramified primes:   \(2\), \(5\), \(197\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{10}) \)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  4.0.256000.4

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{10840}a^{12}-\frac{1}{2}a^{11}-\frac{1659}{5420}a^{10}+\frac{16}{271}a^{9}+\frac{4509}{10840}a^{8}+\frac{118}{271}a^{7}+\frac{1609}{5420}a^{6}-\frac{41}{542}a^{5}+\frac{4681}{10840}a^{4}+\frac{93}{271}a^{3}+\frac{185}{542}a^{2}-\frac{48}{271}a+\frac{225}{1084}$, $\frac{1}{10840}a^{13}-\frac{1659}{5420}a^{11}+\frac{16}{271}a^{10}+\frac{4509}{10840}a^{9}-\frac{35}{542}a^{8}+\frac{1609}{5420}a^{7}-\frac{41}{542}a^{6}+\frac{4681}{10840}a^{5}-\frac{85}{542}a^{4}+\frac{185}{542}a^{3}-\frac{48}{271}a^{2}+\frac{225}{1084}a$, $\frac{1}{10840}a^{14}+\frac{16}{271}a^{11}-\frac{403}{2168}a^{10}-\frac{91}{542}a^{9}+\frac{122}{271}a^{8}-\frac{183}{542}a^{7}+\frac{921}{2168}a^{6}-\frac{81}{542}a^{5}+\frac{769}{5420}a^{4}+\frac{128}{271}a^{3}-\frac{287}{1084}a^{2}+\frac{84}{271}a-\frac{163}{542}$, $\frac{1}{10840}a^{15}-\frac{403}{2168}a^{11}-\frac{147}{542}a^{10}-\frac{91}{271}a^{9}+\frac{243}{542}a^{8}-\frac{535}{2168}a^{7}-\frac{77}{542}a^{6}-\frac{2411}{5420}a^{5}+\frac{28}{271}a^{4}+\frac{113}{1084}a^{3}-\frac{38}{271}a^{2}+\frac{31}{542}a+\frac{43}{271}$, $\frac{1}{21680}a^{16}-\frac{1}{21680}a^{14}+\frac{23}{271}a^{11}-\frac{1991}{4336}a^{10}+\frac{79}{271}a^{9}-\frac{73}{271}a^{8}-\frac{115}{542}a^{7}+\frac{3363}{21680}a^{6}+\frac{112}{271}a^{5}-\frac{9833}{21680}a^{4}+\frac{239}{542}a^{3}-\frac{977}{2168}a^{2}+\frac{257}{542}a-\frac{495}{2168}$, $\frac{1}{21680}a^{17}-\frac{1}{21680}a^{15}-\frac{1991}{4336}a^{11}-\frac{29}{271}a^{10}+\frac{112}{271}a^{9}+\frac{57}{542}a^{8}-\frac{9437}{21680}a^{7}+\frac{81}{271}a^{6}+\frac{3047}{21680}a^{5}+\frac{87}{542}a^{4}-\frac{369}{2168}a^{3}+\frac{245}{542}a^{2}-\frac{599}{2168}a+\frac{11}{271}$, $\frac{1}{12\cdots 20}a^{18}+\frac{20\cdots 13}{12\cdots 20}a^{17}-\frac{32\cdots 97}{12\cdots 20}a^{16}-\frac{34\cdots 77}{12\cdots 20}a^{15}+\frac{21\cdots 33}{60\cdots 60}a^{14}-\frac{25\cdots 41}{12\cdots 52}a^{13}-\frac{27\cdots 81}{12\cdots 20}a^{12}+\frac{11\cdots 29}{24\cdots 04}a^{11}+\frac{42\cdots 59}{60\cdots 60}a^{10}+\frac{96\cdots 39}{12\cdots 52}a^{9}-\frac{11\cdots 71}{12\cdots 20}a^{8}+\frac{25\cdots 59}{12\cdots 20}a^{7}+\frac{25\cdots 21}{12\cdots 20}a^{6}-\frac{34\cdots 11}{12\cdots 20}a^{5}-\frac{69\cdots 01}{15\cdots 90}a^{4}+\frac{49\cdots 47}{12\cdots 52}a^{3}-\frac{29\cdots 37}{12\cdots 52}a^{2}-\frac{27\cdots 89}{12\cdots 52}a+\frac{49\cdots 09}{60\cdots 76}$, $\frac{1}{67\cdots 80}a^{19}-\frac{11\cdots 71}{33\cdots 40}a^{18}+\frac{11\cdots 99}{67\cdots 80}a^{17}-\frac{11\cdots 69}{13\cdots 96}a^{16}+\frac{16\cdots 37}{83\cdots 10}a^{15}-\frac{12\cdots 39}{67\cdots 80}a^{14}-\frac{58\cdots 17}{67\cdots 80}a^{13}+\frac{31\cdots 87}{33\cdots 40}a^{12}-\frac{58\cdots 81}{16\cdots 20}a^{11}-\frac{16\cdots 57}{67\cdots 80}a^{10}-\frac{10\cdots 99}{13\cdots 96}a^{9}-\frac{44\cdots 23}{67\cdots 48}a^{8}-\frac{13\cdots 69}{67\cdots 80}a^{7}+\frac{38\cdots 47}{67\cdots 80}a^{6}-\frac{14\cdots 74}{41\cdots 05}a^{5}-\frac{82\cdots 73}{67\cdots 80}a^{4}+\frac{17\cdots 61}{67\cdots 48}a^{3}+\frac{16\cdots 07}{67\cdots 48}a^{2}-\frac{58\cdots 77}{33\cdots 24}a-\frac{33\cdots 55}{67\cdots 48}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  not computed
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  not computed
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:  not computed
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot R \cdot h}{2\cdot\sqrt{5657954428456562353084024324409254309146809860096000000000000000}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 + 884*x^18 - 120*x^17 + 320632*x^16 - 47040*x^15 + 62498912*x^14 - 845280*x^13 + 7170696115*x^12 + 2029080960*x^11 + 497966799168*x^10 + 363381965160*x^9 + 20788727497872*x^8 + 25825943410560*x^7 + 504577565508196*x^6 + 823130089914720*x^5 + 6675937179144981*x^4 + 10233463840763040*x^3 + 40465493406379000*x^2 + 32655100199688840*x + 23192516886401110); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4\times F_5$ (as 20T20):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 80
The 20 conjugacy class representatives for $C_4\times F_5$
Character table for $C_4\times F_5$

Intermediate fields

\(\Q(\sqrt{10}) \), 4.0.256000.4, 5.1.12049107848000.1, 10.2.5807239997309407644160000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 20.4.45263635427652498824672194595274034473174478880768000000000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{4}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ R ${\href{/padicField/7.4.0.1}{4} }^{5}$ ${\href{/padicField/11.4.0.1}{4} }^{5}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{5}$ $20$ ${\href{/padicField/23.4.0.1}{4} }^{5}$ $20$ ${\href{/padicField/31.5.0.1}{5} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{5}$ ${\href{/padicField/53.4.0.1}{4} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.4.11a1.15$x^{4} + 4 x^{2} + 10$$4$$1$$11$$C_4$$$[3, 4]$$
2.4.4.44a1.1155$x^{16} + 4 x^{13} + 12 x^{12} + 6 x^{10} + 36 x^{9} + 34 x^{8} + 4 x^{7} + 36 x^{6} + 68 x^{5} + 37 x^{4} + 12 x^{3} + 34 x^{2} + 36 x + 15$$4$$4$$44$$C_4^2$$$[3, 4]^{4}$$
\(5\) Copy content Toggle raw display 5.1.4.3a1.2$x^{4} + 10$$4$$1$$3$$C_4$$$[\ ]_{4}$$
5.4.4.12a1.4$x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$$4$$4$$12$$C_4^2$$$[\ ]_{4}^{4}$$
\(197\) Copy content Toggle raw display 197.2.5.8a1.1$x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$$5$$2$$8$$F_5$$$[\ ]_{5}^{4}$$
197.2.5.8a1.1$x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$$5$$2$$8$$F_5$$$[\ ]_{5}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)