Normalized defining polynomial
\( x^{2} + 56258202 \)
Invariants
| Degree: | $2$ |
| |
| Signature: | $[0, 1]$ |
| |
| Discriminant: |
\(-225032808\)
\(\medspace = -\,2^{3}\cdot 3\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\)
|
| |
| Root discriminant: | \($15\,001$.09\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}7^{1/2}11^{1/2}13^{1/2}17^{1/2}19^{1/2}29^{1/2}\approx 15001.09356013754$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(11\), \(13\), \(17\), \(19\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-56258202}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(225032808=2^{3}\cdot 3\cdot 7\cdot 11\cdot 13\cdot 17\cdot 19\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{225032808}(1,·)$, $\chi_{225032808}(112516403,·)$$\rbrace$ | ||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{1}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{54}$, which has order $3456$ |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{54}$, which has order $3456$ |
| |
| Relative class number: | $3456$ |
Unit group
| Rank: | $0$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Regulator: | \( 1 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr =\mathstrut &\frac{2^{0}\cdot(2\pi)^{1}\cdot 1 \cdot 3456}{2\cdot\sqrt{225032808}}\cr\approx \mathstrut & 0.723770181639130 \end{aligned}\]
Galois group
| A cyclic group of order 2 |
| The 2 conjugacy class representatives for $C_2$ |
| Character table for $C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }$ | R | R | R | R | R | ${\href{/padicField/23.2.0.1}{2} }$ | R | ${\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(11\)
| 11.1.2.1a1.1 | $x^{2} + 11$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(13\)
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(17\)
| 17.1.2.1a1.1 | $x^{2} + 17$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(19\)
| 19.1.2.1a1.1 | $x^{2} + 19$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |