Normalized defining polynomial
\( x^{2} - x + 4076 \)
Invariants
| Degree: | $2$ |
| |
| Signature: | $[0, 1]$ |
| |
| Discriminant: |
\(-16303\)
\(\medspace = -\,7\cdot 17\cdot 137\)
|
| |
| Root discriminant: | \(127.68\) |
| |
| Galois root discriminant: | $7^{1/2}17^{1/2}137^{1/2}\approx 127.68320171424274$ | ||
| Ramified primes: |
\(7\), \(17\), \(137\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-16303}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(16303=7\cdot 17\cdot 137\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-16303}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{24}$, which has order $48$ |
| |
| Narrow class group: | $C_{2}\times C_{24}$, which has order $48$ |
| |
| Relative class number: | $48$ |
Unit group
| Rank: | $0$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Regulator: | \( 1 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr =\mathstrut &\frac{2^{0}\cdot(2\pi)^{1}\cdot 1 \cdot 48}{2\cdot\sqrt{16303}}\cr\approx \mathstrut & 1.18102025440900 \end{aligned}\]
Galois group
| A cyclic group of order 2 |
| The 2 conjugacy class representatives for $C_2$ |
| Character table for $C_2$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.2.0.1}{2} }$ | R | ${\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(17\)
| 17.1.2.1a1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
|
\(137\)
| 137.1.2.1a1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *2 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *2 | 1.16303.2t1.a.a | $1$ | $ 7 \cdot 17 \cdot 137 $ | \(\Q(\sqrt{-16303}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.