Normalized defining polynomial
\( x^{2} - x + 26626 \)
Invariants
Degree: | $2$ |
| |
Signature: | $[0, 1]$ |
| |
Discriminant: |
\(-106503\)
\(\medspace = -\,3\cdot 131\cdot 271\)
|
| |
Root discriminant: | \(326.35\) |
| |
Galois root discriminant: | $3^{1/2}131^{1/2}271^{1/2}\approx 326.3479737948437$ | ||
Ramified primes: |
\(3\), \(131\), \(271\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-106503}) \) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(106503=3\cdot 131\cdot 271\) | ||
Dirichlet character group: | not computed | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-106503}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{76}$, which has order $152$ |
| |
Narrow class group: | $C_{2}\times C_{76}$, which has order $152$ |
| |
Relative class number: | $152$ |
Unit group
Rank: | $0$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Regulator: | \( 1 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr =\mathstrut &\frac{2^{0}\cdot(2\pi)^{1}\cdot 1 \cdot 152}{2\cdot\sqrt{106503}}\cr\approx \mathstrut & 1.46322980894571 \end{aligned}\]
Galois group
A cyclic group of order 2 |
The 2 conjugacy class representatives for $C_2$ |
Character table for $C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
\(131\)
| 131.1.2.1a1.1 | $x^{2} + 131$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
\(271\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.106503.2t1.a.a | $1$ | $ 3 \cdot 131 \cdot 271 $ | \(\Q(\sqrt{-106503}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.