Normalized defining polynomial
\( x^{18} - 18 x^{16} - 12 x^{15} + 117 x^{14} + 180 x^{13} - 210 x^{12} - 912 x^{11} - 1071 x^{10} + \cdots + 4 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[4, 7]$ |
| |
| Discriminant: |
\(-61351691829216883959983505408\)
\(\medspace = -\,2^{46}\cdot 3^{26}\cdot 7^{3}\)
|
| |
| Root discriminant: | \(39.75\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{32}a^{14}-\frac{1}{8}a^{13}-\frac{3}{16}a^{10}-\frac{1}{4}a^{9}+\frac{1}{16}a^{8}-\frac{9}{32}a^{6}-\frac{3}{8}a^{5}-\frac{5}{16}a^{4}-\frac{1}{2}a^{3}+\frac{3}{16}a^{2}-\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{32}a^{15}-\frac{3}{16}a^{11}+\frac{1}{16}a^{9}-\frac{1}{4}a^{8}-\frac{9}{32}a^{7}-\frac{1}{2}a^{6}-\frac{5}{16}a^{5}-\frac{1}{4}a^{4}+\frac{3}{16}a^{3}-\frac{1}{2}a^{2}+\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{32}a^{16}+\frac{1}{16}a^{12}-\frac{3}{16}a^{10}-\frac{1}{4}a^{9}-\frac{1}{32}a^{8}-\frac{1}{2}a^{7}-\frac{1}{16}a^{6}-\frac{1}{4}a^{5}+\frac{3}{16}a^{4}-\frac{1}{2}a^{3}-\frac{1}{8}a^{2}-\frac{1}{2}a$, $\frac{1}{80\cdots 52}a^{17}-\frac{66738842292777}{80\cdots 52}a^{16}+\frac{60759559313585}{40\cdots 76}a^{15}+\frac{46397977253827}{80\cdots 52}a^{14}+\frac{1016052567329}{9476737860688}a^{13}+\frac{169088504138707}{40\cdots 76}a^{12}+\frac{322800149155215}{40\cdots 76}a^{11}+\frac{244770118525165}{20\cdots 88}a^{10}+\frac{825170884448515}{80\cdots 52}a^{9}+\frac{734860527666151}{80\cdots 52}a^{8}+\frac{996676738467899}{20\cdots 88}a^{7}-\frac{27\cdots 05}{80\cdots 52}a^{6}+\frac{13\cdots 43}{40\cdots 76}a^{5}+\frac{4565717762279}{33168582512408}a^{4}-\frac{272126010511307}{10\cdots 44}a^{3}+\frac{3875211662971}{15745397145968}a^{2}+\frac{46614016106107}{505820883314222}a+\frac{110446810378025}{20\cdots 88}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{123946119}{1559876872}a^{17}+\frac{161327991}{3119753744}a^{16}-\frac{4518036753}{3119753744}a^{15}-\frac{2859884823}{1559876872}a^{14}+\frac{114105465}{12785876}a^{13}+\frac{30835614999}{1559876872}a^{12}-\frac{13911582663}{1559876872}a^{11}-\frac{127182102951}{1559876872}a^{10}-\frac{24701950738}{194984609}a^{9}+\frac{136495803717}{3119753744}a^{8}+\frac{1591242629661}{3119753744}a^{7}+\frac{279234539301}{389969218}a^{6}+\frac{314375735475}{1559876872}a^{5}-\frac{6530238765}{25571752}a^{4}-\frac{134325029895}{1559876872}a^{3}+\frac{11869754874}{194984609}a^{2}-\frac{5578385895}{779938436}a-\frac{183057709}{389969218}$, $\frac{106786262236753}{11\cdots 36}a^{17}-\frac{9928731614657}{72260126187746}a^{16}-\frac{16\cdots 95}{11\cdots 36}a^{15}+\frac{12\cdots 59}{11\cdots 36}a^{14}+\frac{12582828691113}{1353819694384}a^{13}+\frac{207158137687577}{72260126187746}a^{12}-\frac{69\cdots 25}{289040504750984}a^{11}-\frac{28\cdots 85}{578081009501968}a^{10}-\frac{29\cdots 11}{11\cdots 36}a^{9}+\frac{87\cdots 43}{578081009501968}a^{8}+\frac{35\cdots 85}{11\cdots 36}a^{7}+\frac{78\cdots 05}{11\cdots 36}a^{6}-\frac{15\cdots 21}{72260126187746}a^{5}-\frac{422905444904939}{9476737860688}a^{4}+\frac{41\cdots 09}{578081009501968}a^{3}-\frac{49600533436659}{2249342449424}a^{2}+\frac{614862808362433}{289040504750984}a+\frac{1258238333361}{289040504750984}$, $\frac{5435918070703}{165166002714848}a^{17}-\frac{14294972850311}{82583001357424}a^{16}-\frac{53647705407357}{165166002714848}a^{15}+\frac{47340541283689}{20645750339356}a^{14}+\frac{2433655415075}{1353819694384}a^{13}-\frac{451634805578037}{41291500678712}a^{12}-\frac{504748652047171}{41291500678712}a^{11}+\frac{543786372540077}{41291500678712}a^{10}+\frac{92\cdots 39}{165166002714848}a^{9}+\frac{72\cdots 95}{82583001357424}a^{8}-\frac{14\cdots 25}{165166002714848}a^{7}-\frac{15\cdots 19}{41291500678712}a^{6}-\frac{72\cdots 69}{41291500678712}a^{5}+\frac{155008753874925}{676909847192}a^{4}+\frac{70\cdots 27}{82583001357424}a^{3}-\frac{7485620760449}{80333658908}a^{2}+\frac{706660534007617}{41291500678712}a-\frac{1763875649301}{10322875169678}$, $\frac{11\cdots 95}{80\cdots 52}a^{17}+\frac{528364836606177}{80\cdots 52}a^{16}-\frac{640853056223460}{252910441657111}a^{15}-\frac{22\cdots 23}{80\cdots 52}a^{14}+\frac{151993469245399}{9476737860688}a^{13}+\frac{12\cdots 93}{40\cdots 76}a^{12}-\frac{85\cdots 33}{40\cdots 76}a^{11}-\frac{28\cdots 53}{20\cdots 88}a^{10}-\frac{16\cdots 75}{80\cdots 52}a^{9}+\frac{93\cdots 25}{80\cdots 52}a^{8}+\frac{35\cdots 01}{40\cdots 76}a^{7}+\frac{89\cdots 37}{80\cdots 52}a^{6}+\frac{51\cdots 99}{40\cdots 76}a^{5}-\frac{18\cdots 37}{33168582512408}a^{4}-\frac{25\cdots 59}{20\cdots 88}a^{3}+\frac{22\cdots 33}{15745397145968}a^{2}-\frac{12\cdots 07}{10\cdots 44}a-\frac{34\cdots 37}{20\cdots 88}$, $\frac{46446885454419}{578081009501968}a^{17}+\frac{5567047563859}{144520252375492}a^{16}-\frac{837801151104383}{578081009501968}a^{15}-\frac{18\cdots 51}{11\cdots 36}a^{14}+\frac{1516508193567}{169227461798}a^{13}+\frac{674832426546752}{36130063093873}a^{12}-\frac{14\cdots 31}{144520252375492}a^{11}-\frac{46\cdots 35}{578081009501968}a^{10}-\frac{69\cdots 65}{578081009501968}a^{9}+\frac{30\cdots 69}{578081009501968}a^{8}+\frac{28\cdots 37}{578081009501968}a^{7}+\frac{77\cdots 99}{11\cdots 36}a^{6}+\frac{47\cdots 41}{289040504750984}a^{5}-\frac{24\cdots 93}{9476737860688}a^{4}-\frac{24\cdots 19}{289040504750984}a^{3}+\frac{138387295557223}{2249342449424}a^{2}-\frac{115775497533989}{72260126187746}a-\frac{115643006869529}{289040504750984}$, $\frac{580793121842529}{20\cdots 88}a^{17}-\frac{586809085443557}{20\cdots 88}a^{16}-\frac{11\cdots 97}{252910441657111}a^{15}+\frac{11\cdots 73}{10\cdots 44}a^{14}+\frac{35991082847091}{1184592232586}a^{13}+\frac{57\cdots 36}{252910441657111}a^{12}-\frac{17\cdots 65}{252910441657111}a^{11}-\frac{47\cdots 42}{252910441657111}a^{10}-\frac{30\cdots 47}{20\cdots 88}a^{9}+\frac{87\cdots 79}{20\cdots 88}a^{8}+\frac{29\cdots 07}{252910441657111}a^{7}+\frac{68\cdots 41}{10\cdots 44}a^{6}-\frac{53\cdots 23}{10\cdots 44}a^{5}-\frac{67\cdots 57}{16584291256204}a^{4}+\frac{51\cdots 11}{252910441657111}a^{3}+\frac{93952670800449}{1968174643246}a^{2}-\frac{91\cdots 71}{252910441657111}a+\frac{13\cdots 53}{252910441657111}$, $\frac{997248445911455}{80\cdots 52}a^{17}-\frac{588223109311955}{80\cdots 52}a^{16}-\frac{87\cdots 77}{40\cdots 76}a^{15}-\frac{895368432248023}{40\cdots 76}a^{14}+\frac{138201569374805}{9476737860688}a^{13}+\frac{56\cdots 09}{40\cdots 76}a^{12}-\frac{14\cdots 27}{40\cdots 76}a^{11}-\frac{37\cdots 89}{40\cdots 76}a^{10}-\frac{59\cdots 27}{80\cdots 52}a^{9}+\frac{16\cdots 83}{80\cdots 52}a^{8}+\frac{11\cdots 31}{20\cdots 88}a^{7}+\frac{69\cdots 53}{20\cdots 88}a^{6}-\frac{14\cdots 01}{40\cdots 76}a^{5}-\frac{15\cdots 31}{66337165024816}a^{4}+\frac{31\cdots 27}{10\cdots 44}a^{3}+\frac{446104094480963}{3936349286492}a^{2}-\frac{94\cdots 55}{10\cdots 44}a+\frac{18\cdots 11}{10\cdots 44}$, $\frac{16093687891075}{11\cdots 36}a^{17}-\frac{4335433996231}{11\cdots 36}a^{16}-\frac{266392358960589}{11\cdots 36}a^{15}-\frac{146792919790099}{11\cdots 36}a^{14}+\frac{1831312325551}{1353819694384}a^{13}+\frac{13\cdots 85}{578081009501968}a^{12}-\frac{467641061434147}{289040504750984}a^{11}-\frac{31\cdots 17}{289040504750984}a^{10}-\frac{18\cdots 65}{11\cdots 36}a^{9}+\frac{11\cdots 41}{11\cdots 36}a^{8}+\frac{78\cdots 27}{11\cdots 36}a^{7}+\frac{10\cdots 77}{11\cdots 36}a^{6}+\frac{12\cdots 45}{36130063093873}a^{5}-\frac{75000319779405}{4738368930344}a^{4}-\frac{60\cdots 25}{578081009501968}a^{3}+\frac{7130750119261}{2249342449424}a^{2}+\frac{374041115356059}{289040504750984}a-\frac{105326574950925}{289040504750984}$, $\frac{18904570978691}{578081009501968}a^{17}+\frac{129369140721059}{11\cdots 36}a^{16}-\frac{928180402847729}{11\cdots 36}a^{15}-\frac{24\cdots 71}{11\cdots 36}a^{14}+\frac{1989475282037}{338454923596}a^{13}+\frac{96\cdots 51}{578081009501968}a^{12}-\frac{47\cdots 23}{578081009501968}a^{11}-\frac{87\cdots 07}{144520252375492}a^{10}-\frac{11\cdots 77}{144520252375492}a^{9}+\frac{40\cdots 11}{11\cdots 36}a^{8}+\frac{44\cdots 49}{11\cdots 36}a^{7}+\frac{55\cdots 97}{11\cdots 36}a^{6}-\frac{65\cdots 47}{578081009501968}a^{5}-\frac{479181343798865}{1184592232586}a^{4}+\frac{42\cdots 01}{578081009501968}a^{3}+\frac{348649857334237}{2249342449424}a^{2}-\frac{22\cdots 81}{289040504750984}a+\frac{32\cdots 95}{289040504750984}$, $\frac{366043639952299}{40\cdots 76}a^{17}+\frac{79610575009293}{80\cdots 52}a^{16}-\frac{13\cdots 23}{80\cdots 52}a^{15}-\frac{49\cdots 07}{40\cdots 76}a^{14}+\frac{52703875534977}{4738368930344}a^{13}+\frac{69\cdots 49}{40\cdots 76}a^{12}-\frac{86\cdots 41}{40\cdots 76}a^{11}-\frac{35\cdots 09}{40\cdots 76}a^{10}-\frac{19\cdots 93}{20\cdots 88}a^{9}+\frac{99\cdots 11}{80\cdots 52}a^{8}+\frac{45\cdots 67}{80\cdots 52}a^{7}+\frac{10\cdots 47}{20\cdots 88}a^{6}-\frac{73\cdots 59}{40\cdots 76}a^{5}-\frac{29\cdots 31}{66337165024816}a^{4}-\frac{40\cdots 33}{40\cdots 76}a^{3}+\frac{387796824361407}{3936349286492}a^{2}-\frac{58\cdots 37}{20\cdots 88}a+\frac{16\cdots 25}{10\cdots 44}$
|
| |
| Regulator: | \( 537112098.848 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{7}\cdot 537112098.848 \cdot 1}{2\cdot\sqrt{61351691829216883959983505408}}\cr\approx \mathstrut & 6.70657412674 \end{aligned}\] (assuming GRH)
Galois group
$C_3^4:(C_6^2:C_4)$ (as 18T576):
| A solvable group of order 11664 |
| The 49 conjugacy class representatives for $C_3^4:(C_6^2:C_4)$ |
| Character table for $C_3^4:(C_6^2:C_4)$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 6.2.11943936.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | R | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ | ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }^{4}$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.4.11a1.12 | $x^{4} + 8 x^{3} + 4 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ | |
| 2.1.4.8b1.6 | $x^{4} + 4 x^{3} + 2 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $$[2, 3]$$ | |
| 2.1.8.24c1.61 | $x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $$[2, 3, 4]$$ | |
|
\(3\)
| 3.2.9.26b30.1 | $x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4176 x^{14} + 14112 x^{13} + 38304 x^{12} + 85251 x^{11} + 157569 x^{10} + 243578 x^{9} + 315756 x^{8} + 342795 x^{7} + 309978 x^{6} + 231078 x^{5} + 139584 x^{4} + 66396 x^{3} + 23640 x^{2} + 5688 x + 707$ | $9$ | $2$ | $26$ | not computed | not computed |
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |