Normalized defining polynomial
\( x^{18} + 26x^{12} + 412x^{6} - 5832 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(7312316880125952000000000000\)
\(\medspace = 2^{33}\cdot 3^{20}\cdot 5^{12}\)
|
| |
| Root discriminant: | \(35.32\) |
| |
| Galois root discriminant: | $2^{11/6}3^{7/6}5^{2/3}\approx 37.54134188892015$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{6}a^{7}-\frac{1}{3}a$, $\frac{1}{36}a^{8}-\frac{7}{18}a^{2}$, $\frac{1}{36}a^{9}-\frac{7}{18}a^{3}$, $\frac{1}{36}a^{10}-\frac{7}{18}a^{4}$, $\frac{1}{36}a^{11}-\frac{7}{18}a^{5}$, $\frac{1}{1224}a^{12}+\frac{37}{306}a^{6}+\frac{3}{34}$, $\frac{1}{3672}a^{13}-\frac{1}{108}a^{11}+\frac{1}{108}a^{9}+\frac{37}{918}a^{7}+\frac{7}{54}a^{5}-\frac{7}{54}a^{3}+\frac{1}{34}a$, $\frac{1}{3672}a^{14}-\frac{1}{3672}a^{12}+\frac{1}{108}a^{10}+\frac{23}{1836}a^{8}-\frac{37}{918}a^{6}-\frac{7}{54}a^{4}+\frac{64}{153}a^{2}-\frac{1}{34}$, $\frac{1}{3672}a^{15}-\frac{11}{1836}a^{9}-\frac{148}{459}a^{3}$, $\frac{1}{22032}a^{16}+\frac{5}{1377}a^{10}-\frac{653}{5508}a^{4}$, $\frac{1}{66096}a^{17}+\frac{5}{4131}a^{11}-\frac{6161}{16524}a^{5}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{22032}a^{16}+\frac{5}{1377}a^{10}-\frac{653}{5508}a^{4}$, $\frac{1}{11016}a^{16}-\frac{1}{3672}a^{14}+\frac{1}{3672}a^{12}-\frac{11}{5508}a^{10}-\frac{23}{1836}a^{8}+\frac{37}{918}a^{6}-\frac{148}{1377}a^{4}-\frac{64}{153}a^{2}+\frac{35}{34}$, $\frac{1}{11016}a^{16}+\frac{1}{1836}a^{14}-\frac{1}{1836}a^{12}-\frac{11}{5508}a^{10}-\frac{5}{1836}a^{8}-\frac{37}{459}a^{6}-\frac{148}{1377}a^{4}+\frac{23}{102}a^{2}-\frac{1}{17}$, $\frac{1}{3672}a^{15}+\frac{10}{459}a^{9}+\frac{265}{918}a^{3}+1$, $\frac{5}{66096}a^{17}+\frac{25}{4131}a^{11}+\frac{2243}{16524}a^{5}+1$, $\frac{5}{66096}a^{17}-\frac{1}{1224}a^{14}+\frac{25}{4131}a^{11}-\frac{23}{612}a^{8}+\frac{2243}{16524}a^{5}-\frac{13}{51}a^{2}$, $\frac{1}{2754}a^{16}-\frac{1}{1836}a^{14}-\frac{1}{3672}a^{12}+\frac{29}{2754}a^{10}+\frac{5}{1836}a^{8}-\frac{37}{918}a^{6}+\frac{428}{1377}a^{4}-\frac{23}{102}a^{2}-\frac{35}{34}$, $\frac{1}{22032}a^{16}+\frac{1}{3672}a^{15}-\frac{1}{918}a^{14}+\frac{1}{612}a^{13}-\frac{1}{1836}a^{12}-\frac{31}{5508}a^{10}+\frac{10}{459}a^{9}-\frac{23}{459}a^{8}+\frac{23}{306}a^{7}-\frac{37}{459}a^{6}+\frac{61}{5508}a^{4}+\frac{265}{918}a^{3}-\frac{103}{153}a^{2}+\frac{26}{51}a-\frac{1}{17}$, $\frac{23}{66096}a^{17}-\frac{1}{1836}a^{16}-\frac{1}{1224}a^{15}+\frac{5}{3672}a^{14}-\frac{1}{408}a^{13}+\frac{13}{3672}a^{12}+\frac{1}{16524}a^{11}-\frac{23}{918}a^{10}+\frac{11}{612}a^{9}+\frac{13}{1836}a^{8}-\frac{1}{34}a^{7}+\frac{11}{459}a^{6}-\frac{3085}{16524}a^{5}+\frac{25}{153}a^{4}-\frac{5}{153}a^{3}-\frac{20}{153}a^{2}+\frac{7}{102}a-\frac{55}{34}$
|
| |
| Regulator: | \( 2160321.3612944754 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 2160321.3612944754 \cdot 6}{2\cdot\sqrt{7312316880125952000000000000}}\cr\approx \mathstrut & 0.736395373310683 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.1.2700.1, 3.1.675.1, 3.1.300.1, 3.1.108.1, 6.2.933120000.7, 6.2.11520000.1, 6.2.233280000.13, 6.2.1492992.4, 9.1.59049000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.21936950640377856000000000000.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.11a1.5 | $x^{6} + 4 x^{3} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ |
| 2.2.6.22a1.9 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 145 x^{6} + 138 x^{5} + 114 x^{4} + 78 x^{3} + 45 x^{2} + 18 x + 7$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.2.3.6a2.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 39 x^{2} + 30 x + 17$ | $3$ | $2$ | $6$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ |
| 3.2.6.14a1.3 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3123 x^{4} + 2252 x^{3} + 1176 x^{2} + 408 x + 79$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(5\)
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.2.3.4a1.2 | $x^{6} + 12 x^{5} + 54 x^{4} + 112 x^{3} + 108 x^{2} + 48 x + 13$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |