Normalized defining polynomial
\( x^{18} - 12x^{15} + 45x^{12} + 40x^{9} - 45x^{6} + 228x^{3} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(4580524758819553253173828125\)
\(\medspace = 3^{36}\cdot 5^{15}\)
|
| |
| Root discriminant: | \(34.41\) |
| |
| Galois root discriminant: | $3^{37/18}5^{5/6}\approx 36.57836164674376$ | ||
| Ramified primes: |
\(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{6}-\frac{1}{8}a^{3}+\frac{1}{8}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{7}-\frac{1}{8}a^{4}+\frac{1}{8}a$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{8}-\frac{1}{8}a^{5}+\frac{1}{8}a^{2}$, $\frac{1}{32}a^{12}+\frac{1}{16}a^{6}-\frac{3}{32}$, $\frac{1}{32}a^{13}+\frac{1}{16}a^{7}-\frac{3}{32}a$, $\frac{1}{32}a^{14}+\frac{1}{16}a^{8}-\frac{3}{32}a^{2}$, $\frac{1}{2176}a^{15}+\frac{1}{128}a^{12}-\frac{3}{1088}a^{9}-\frac{67}{1088}a^{6}+\frac{421}{2176}a^{3}-\frac{619}{2176}$, $\frac{1}{2176}a^{16}+\frac{1}{128}a^{13}-\frac{3}{1088}a^{10}-\frac{67}{1088}a^{7}+\frac{421}{2176}a^{4}-\frac{619}{2176}a$, $\frac{1}{2176}a^{17}+\frac{1}{128}a^{14}-\frac{3}{1088}a^{11}-\frac{67}{1088}a^{8}+\frac{421}{2176}a^{5}-\frac{619}{2176}a^{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{21}{2176}a^{15}-\frac{15}{128}a^{12}+\frac{481}{1088}a^{9}+\frac{429}{1088}a^{6}-\frac{951}{2176}a^{3}+\frac{3525}{2176}$, $\frac{1349}{2176}a^{17}-\frac{951}{128}a^{14}+\frac{30225}{1088}a^{11}+\frac{27461}{1088}a^{8}-\frac{59847}{2176}a^{5}+\frac{306621}{2176}a^{2}$, $\frac{467}{2176}a^{17}-\frac{329}{128}a^{14}+\frac{10431}{1088}a^{11}+\frac{9715}{1088}a^{8}-\frac{21809}{2176}a^{5}+\frac{107027}{2176}a^{2}$, $\frac{43}{544}a^{17}+\frac{43}{1088}a^{16}-\frac{19}{2176}a^{15}-\frac{31}{32}a^{14}-\frac{31}{64}a^{13}+\frac{13}{128}a^{12}+\frac{1027}{272}a^{11}+\frac{1027}{544}a^{10}-\frac{351}{1088}a^{9}+\frac{689}{272}a^{8}+\frac{689}{544}a^{7}-\frac{767}{1088}a^{6}-\frac{2977}{544}a^{5}-\frac{3249}{1088}a^{4}+\frac{1521}{2176}a^{3}+\frac{10205}{544}a^{2}+\frac{9389}{1088}a+\frac{65}{2176}$, $\frac{959}{2176}a^{17}+\frac{9}{128}a^{16}+\frac{21}{2176}a^{15}-\frac{677}{128}a^{14}-\frac{107}{128}a^{13}-\frac{15}{128}a^{12}+\frac{21603}{1088}a^{11}+\frac{197}{64}a^{10}+\frac{481}{1088}a^{9}+\frac{18911}{1088}a^{8}+\frac{193}{64}a^{7}+\frac{429}{1088}a^{6}-\frac{41253}{2176}a^{5}-\frac{243}{128}a^{4}-\frac{951}{2176}a^{3}+\frac{220951}{2176}a^{2}+\frac{1929}{128}a+\frac{5701}{2176}$, $\frac{729}{2176}a^{17}-\frac{515}{128}a^{14}+\frac{16445}{1088}a^{11}+\frac{14465}{1088}a^{8}-\frac{33907}{2176}a^{5}+\frac{168977}{2176}a^{2}-2$, $\frac{1937}{2176}a^{17}+\frac{173}{1088}a^{16}+\frac{21}{2176}a^{15}-\frac{1367}{128}a^{14}-\frac{121}{64}a^{13}-\frac{15}{128}a^{12}+\frac{43557}{1088}a^{11}+\frac{3765}{544}a^{10}+\frac{481}{1088}a^{9}+\frac{38861}{1088}a^{8}+\frac{4015}{544}a^{7}+\frac{429}{1088}a^{6}-\frac{87291}{2176}a^{5}-\frac{8087}{1088}a^{4}-\frac{951}{2176}a^{3}+\frac{442381}{2176}a^{2}+\frac{36971}{1088}a+\frac{12229}{2176}$, $\frac{991}{1088}a^{17}-\frac{63}{2176}a^{16}-\frac{1}{68}a^{15}-\frac{699}{64}a^{14}+\frac{45}{128}a^{13}+\frac{3}{16}a^{12}+\frac{22255}{544}a^{11}-\frac{1443}{1088}a^{10}-\frac{107}{136}a^{9}+\frac{19861}{544}a^{8}-\frac{1559}{1088}a^{7}-\frac{9}{17}a^{6}-\frac{43421}{1088}a^{5}+\frac{6117}{2176}a^{4}+\frac{297}{136}a^{3}+\frac{226337}{1088}a^{2}-\frac{15471}{2176}a-\frac{1179}{272}$, $\frac{77}{1088}a^{16}-\frac{15}{1088}a^{15}-\frac{55}{64}a^{13}+\frac{11}{64}a^{12}+\frac{1809}{544}a^{10}-\frac{363}{544}a^{9}+\frac{1165}{544}a^{7}-\frac{321}{544}a^{6}-\frac{3215}{1088}a^{4}+\frac{2661}{1088}a^{3}+\frac{19181}{1088}a-\frac{3193}{1088}$
|
| |
| Regulator: | \( 22847802.33598889 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 22847802.33598889 \cdot 2}{2\cdot\sqrt{4580524758819553253173828125}}\cr\approx \mathstrut & 3.28008995044428 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.243.1, 3.1.6075.2, 3.1.675.1, 3.1.6075.1, 6.2.7381125.1, 6.2.2278125.1, 6.2.184528125.1, 6.2.184528125.2, 9.1.6053445140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.13741574276458659759521484375.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{9}$ | R | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.9.36b6.16 | $x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4176 x^{14} + 14112 x^{13} + 38304 x^{12} + 85248 x^{11} + 157536 x^{10} + 243392 x^{9} + 315072 x^{8} + 340992 x^{7} + 306435 x^{6} + 225810 x^{5} + 133695 x^{4} + 61572 x^{3} + 20925 x^{2} + 4770 x + 593$ | $9$ | $2$ | $36$ | not computed | not computed |
|
\(5\)
| 5.1.6.5a1.1 | $x^{6} + 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |
| 5.2.6.10a1.2 | $x^{12} + 24 x^{11} + 252 x^{10} + 1520 x^{9} + 5820 x^{8} + 14784 x^{7} + 25376 x^{6} + 29568 x^{5} + 23280 x^{4} + 12160 x^{3} + 4032 x^{2} + 768 x + 69$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ |