Properties

Label 18.0.13741574276...4375.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{37}\cdot 5^{15}$
Root discriminant $36.58$
Ramified primes $3, 5$
Class number $4$ (GRH)
Class group $[2, 2]$ (GRH)
Galois group $C_2\times C_3:S_3$ (as 18T12)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, 0, 0, 237, 0, 0, 465, 0, 0, -250, 0, 0, 30, 0, 0, -3, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^15 + 30*x^12 - 250*x^9 + 465*x^6 + 237*x^3 + 64)
 
gp: K = bnfinit(x^18 - 3*x^15 + 30*x^12 - 250*x^9 + 465*x^6 + 237*x^3 + 64, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{15} + 30 x^{12} - 250 x^{9} + 465 x^{6} + 237 x^{3} + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-13741574276458659759521484375=-\,3^{37}\cdot 5^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.58$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{3} + \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{4} - \frac{1}{6} a$, $\frac{1}{48} a^{11} - \frac{1}{16} a^{8} + \frac{1}{16} a^{5} + \frac{7}{48} a^{2}$, $\frac{1}{48} a^{12} + \frac{1}{48} a^{9} + \frac{1}{16} a^{6} + \frac{19}{48} a^{3} + \frac{1}{3}$, $\frac{1}{48} a^{13} + \frac{1}{48} a^{10} + \frac{1}{16} a^{7} - \frac{5}{48} a^{4} - \frac{1}{6} a$, $\frac{1}{144} a^{14} - \frac{1}{144} a^{13} + \frac{1}{144} a^{12} + \frac{1}{144} a^{11} - \frac{1}{144} a^{10} + \frac{1}{144} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{3}{16} a^{6} - \frac{29}{144} a^{5} + \frac{29}{144} a^{4} + \frac{43}{144} a^{3} - \frac{5}{36} a^{2} + \frac{5}{36} a + \frac{1}{9}$, $\frac{1}{6624} a^{15} - \frac{2}{207} a^{12} - \frac{103}{3312} a^{9} + \frac{14}{207} a^{6} + \frac{461}{6624} a^{3} + \frac{86}{207}$, $\frac{1}{6624} a^{16} - \frac{2}{207} a^{13} - \frac{103}{3312} a^{10} + \frac{14}{207} a^{7} + \frac{461}{6624} a^{4} + \frac{86}{207} a$, $\frac{1}{6624} a^{17} - \frac{1}{368} a^{14} - \frac{1}{144} a^{13} + \frac{1}{144} a^{12} - \frac{11}{3312} a^{11} - \frac{1}{144} a^{10} + \frac{1}{144} a^{9} - \frac{95}{1656} a^{8} + \frac{1}{16} a^{7} + \frac{3}{16} a^{6} - \frac{51}{736} a^{5} + \frac{29}{144} a^{4} + \frac{43}{144} a^{3} + \frac{1399}{3312} a^{2} + \frac{5}{36} a + \frac{1}{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 47479719.21338162 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_3:S_3$ (as 18T12):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 12 conjugacy class representatives for $C_2\times C_3:S_3$
Character table for $C_2\times C_3:S_3$

Intermediate fields

\(\Q(\sqrt{-15}) \), 3.1.6075.2, 3.1.243.1, 3.1.675.1, 3.1.6075.1, 6.0.553584375.2, 6.0.6834375.1, 6.0.22143375.1, 6.0.553584375.1, 9.1.6053445140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.6.5.2$x^{6} + 10$$6$$1$$5$$D_{6}$$[\ ]_{6}^{2}$
5.12.10.1$x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$$6$$2$$10$$D_6$$[\ ]_{6}^{2}$