Normalized defining polynomial
\( x^{18} - 30x^{15} + 228x^{12} - 1114x^{9} + 1059x^{6} + 192x^{3} + 64 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(2137750540154895153454511280309\)
\(\medspace = 3^{37}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(48.42\) |
| |
| Galois root discriminant: | $3^{37/18}7^{5/6}\approx 48.416970588180874$ | ||
| Ramified primes: |
\(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{21}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{12}a^{9}+\frac{1}{4}a^{3}+\frac{1}{3}$, $\frac{1}{12}a^{10}-\frac{1}{4}a^{4}-\frac{1}{6}a$, $\frac{1}{12}a^{11}-\frac{1}{4}a^{5}-\frac{1}{6}a^{2}$, $\frac{1}{240}a^{12}+\frac{1}{240}a^{9}-\frac{3}{16}a^{6}-\frac{53}{240}a^{3}-\frac{13}{30}$, $\frac{1}{480}a^{13}+\frac{1}{480}a^{10}+\frac{5}{32}a^{7}+\frac{67}{480}a^{4}-\frac{13}{60}a$, $\frac{1}{2880}a^{14}+\frac{1}{1440}a^{13}+\frac{1}{720}a^{12}+\frac{1}{2880}a^{11}+\frac{1}{1440}a^{10}+\frac{1}{720}a^{9}+\frac{7}{64}a^{8}+\frac{7}{32}a^{7}-\frac{1}{16}a^{6}+\frac{547}{2880}a^{5}-\frac{173}{1440}a^{4}+\frac{187}{720}a^{3}+\frac{137}{360}a^{2}+\frac{47}{180}a-\frac{43}{90}$, $\frac{1}{57600}a^{15}-\frac{7}{57600}a^{12}+\frac{1267}{57600}a^{9}-\frac{9173}{57600}a^{6}-\frac{59}{720}a^{3}-\frac{437}{900}$, $\frac{1}{57600}a^{16}-\frac{7}{57600}a^{13}+\frac{1267}{57600}a^{10}-\frac{9173}{57600}a^{7}-\frac{59}{720}a^{4}-\frac{437}{900}a$, $\frac{1}{57600}a^{17}-\frac{7}{57600}a^{14}+\frac{1267}{57600}a^{11}+\frac{5227}{57600}a^{8}-\frac{59}{720}a^{5}+\frac{119}{450}a^{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{12}$, which has order $12$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{12}$, which has order $24$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{149}{57600}a^{15}-\frac{4403}{57600}a^{12}+\frac{31823}{57600}a^{9}-\frac{149977}{57600}a^{6}+\frac{343}{144}a^{3}+\frac{47}{900}$, $\frac{287}{57600}a^{15}-\frac{8249}{57600}a^{12}+\frac{54989}{57600}a^{9}-\frac{249451}{57600}a^{6}-\frac{19}{720}a^{3}-\frac{79}{900}$, $\frac{1}{19200}a^{15}-\frac{7}{19200}a^{12}-\frac{111}{6400}a^{9}+\frac{427}{19200}a^{6}+\frac{1}{240}a^{3}-\frac{479}{100}$, $\frac{599}{19200}a^{17}+\frac{259}{14400}a^{16}-\frac{17993}{19200}a^{14}-\frac{7663}{14400}a^{13}+\frac{45711}{6400}a^{11}+\frac{55903}{14400}a^{10}-\frac{668827}{19200}a^{8}-\frac{265757}{14400}a^{7}+\frac{15883}{480}a^{5}+\frac{16397}{1440}a^{4}+\frac{1079}{100}a^{2}+\frac{7393}{900}a+1$, $\frac{133}{19200}a^{16}-\frac{1337}{6400}a^{13}+\frac{31031}{19200}a^{10}-\frac{155009}{19200}a^{7}+\frac{1449}{160}a^{4}-\frac{154}{75}a+2$, $\frac{6617}{57600}a^{17}+\frac{1679}{19200}a^{16}+\frac{2507}{57600}a^{15}-\frac{197839}{57600}a^{14}-\frac{151939}{57600}a^{13}-\frac{75949}{57600}a^{12}+\frac{496073}{19200}a^{11}+\frac{1172399}{57600}a^{10}+\frac{197723}{19200}a^{9}-\frac{7208941}{57600}a^{8}-\frac{1924867}{19200}a^{7}-\frac{2944711}{57600}a^{6}+\frac{77479}{720}a^{5}+\frac{30511}{288}a^{4}+\frac{42457}{720}a^{3}+\frac{5911}{150}a^{2}+\frac{5593}{450}a-\frac{853}{300}$, $\frac{331}{14400}a^{17}-\frac{53}{1600}a^{16}+\frac{1397}{57600}a^{15}-\frac{2543}{3600}a^{14}+\frac{14419}{14400}a^{13}-\frac{14113}{19200}a^{12}+\frac{13787}{2400}a^{11}-\frac{112079}{14400}a^{10}+\frac{331039}{57600}a^{9}-\frac{105947}{3600}a^{8}+\frac{61969}{1600}a^{7}-\frac{1643881}{57600}a^{6}+\frac{124199}{2880}a^{5}-\frac{3169}{72}a^{4}+\frac{496}{15}a^{3}-\frac{8287}{600}a^{2}+\frac{769}{225}a+\frac{421}{900}$, $\frac{1787}{57600}a^{17}-\frac{17}{800}a^{16}+\frac{3}{200}a^{15}-\frac{53969}{57600}a^{14}+\frac{1517}{2400}a^{13}-\frac{263}{600}a^{12}+\frac{417869}{57600}a^{11}-\frac{11257}{2400}a^{10}+\frac{1853}{600}a^{9}-\frac{2063251}{57600}a^{8}+\frac{18141}{800}a^{7}-\frac{2919}{200}a^{6}+\frac{111857}{2880}a^{5}-\frac{271}{15}a^{4}+\frac{367}{60}a^{3}+\frac{8257}{1800}a^{2}-\frac{667}{150}a+\frac{211}{75}$, $\frac{1}{300}a^{17}-\frac{367}{28800}a^{16}-\frac{533}{57600}a^{15}-\frac{733}{7200}a^{14}+\frac{10949}{28800}a^{13}+\frac{1739}{6400}a^{12}+\frac{5843}{7200}a^{11}-\frac{27403}{9600}a^{10}-\frac{111391}{57600}a^{9}-\frac{9709}{2400}a^{8}+\frac{404591}{28800}a^{7}+\frac{522409}{57600}a^{6}+\frac{6973}{1440}a^{5}-\frac{3655}{288}a^{4}-\frac{43}{8}a^{3}+\frac{829}{225}a^{2}+\frac{241}{300}a-\frac{949}{900}$
|
| |
| Regulator: | \( 160334625.348843 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 160334625.348843 \cdot 12}{2\cdot\sqrt{2137750540154895153454511280309}}\cr\approx \mathstrut & 6.39291599168281 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 3.1.11907.2, 3.1.1323.1, 3.1.243.1, 3.1.11907.1, 6.2.2977309629.3, 6.2.60761421.1, 6.2.36756909.1, 6.2.2977309629.4, 9.1.45579633110361.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.712583513384965051151503760103.1 |
| Minimal sibling: | 18.0.712583513384965051151503760103.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{9}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.18.37c4.77 | $x^{18} + 9 x^{8} + 3 x^{6} + 18 x^{4} + 9 x^{2} + 6$ | $18$ | $1$ | $37$ | not computed | not computed |
|
\(7\)
| 7.3.6.15a1.3 | $x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98736 x^{12} + 161280 x^{11} + 238464 x^{10} + 208640 x^{9} + 334080 x^{8} + 138240 x^{7} + 280320 x^{6} + 46080 x^{5} + 138240 x^{4} + 6144 x^{3} + 36864 x^{2} + 4103$ | $6$ | $3$ | $15$ | $C_6 \times C_3$ | $$[\ ]_{6}^{3}$$ |