Normalized defining polynomial
\( x^{18} - 12x^{15} + 81x^{12} + 680x^{9} + 891x^{6} + 228x^{3} + 1331 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-712583513384965051151503760103\)
\(\medspace = -\,3^{36}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(45.55\) |
| |
| Galois root discriminant: | $3^{37/18}7^{5/6}\approx 48.416970588180874$ | ||
| Ramified primes: |
\(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-7}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{6}-\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{6}-\frac{1}{8}a^{3}+\frac{1}{8}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{7}-\frac{1}{8}a^{4}+\frac{1}{8}a$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{8}-\frac{1}{8}a^{5}+\frac{1}{8}a^{2}$, $\frac{1}{32}a^{12}+\frac{1}{16}a^{6}-\frac{3}{32}$, $\frac{1}{32}a^{13}+\frac{1}{16}a^{7}-\frac{3}{32}a$, $\frac{1}{32}a^{14}+\frac{1}{16}a^{8}-\frac{3}{32}a^{2}$, $\frac{1}{380480}a^{15}-\frac{5791}{380480}a^{12}+\frac{781}{38048}a^{9}-\frac{4643}{38048}a^{6}-\frac{2111}{13120}a^{3}+\frac{128669}{380480}$, $\frac{1}{4185280}a^{16}-\frac{53351}{4185280}a^{13}-\frac{3975}{418528}a^{10}+\frac{38161}{418528}a^{7}+\frac{2939}{13120}a^{4}+\frac{318909}{4185280}a$, $\frac{1}{46038080}a^{17}+\frac{208229}{46038080}a^{14}+\frac{257605}{4603808}a^{11}+\frac{352057}{4603808}a^{8}+\frac{34099}{144320}a^{5}-\frac{7266911}{46038080}a^{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{12}$, which has order $12$ (assuming GRH) |
| |
| Narrow class group: | $C_{12}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{49}{38048}a^{15}-\frac{777}{38048}a^{12}+\frac{3483}{19024}a^{9}+\frac{3905}{19024}a^{6}+\frac{45}{1312}a^{3}+\frac{10215}{38048}$, $\frac{247}{380480}a^{15}-\frac{3577}{380480}a^{12}+\frac{2667}{38048}a^{9}+\frac{13643}{38048}a^{6}-\frac{9737}{13120}a^{3}-\frac{1035157}{380480}$, $\frac{3493}{2092640}a^{16}-\frac{2793}{130790}a^{13}+\frac{31381}{209264}a^{10}+\frac{54387}{52316}a^{7}+\frac{2807}{6560}a^{4}-\frac{203021}{261580}a+2$, $\frac{382989}{46038080}a^{17}-\frac{42521}{4185280}a^{16}+\frac{1063}{76096}a^{15}-\frac{5802359}{46038080}a^{14}+\frac{639271}{4185280}a^{13}-\frac{15837}{76096}a^{12}+\frac{4879713}{4603808}a^{11}-\frac{535181}{418528}a^{10}+\frac{65611}{38048}a^{9}+\frac{11441093}{4603808}a^{8}-\frac{1318725}{418528}a^{7}+\frac{177311}{38048}a^{6}-\frac{263529}{144320}a^{5}+\frac{20101}{13120}a^{4}-\frac{6049}{2624}a^{3}+\frac{194489861}{46038080}a^{2}-\frac{18856149}{4185280}a+\frac{453919}{76096}$, $\frac{333969}{46038080}a^{17}+\frac{1259}{380480}a^{16}-\frac{147}{38048}a^{15}-\frac{4243699}{46038080}a^{14}-\frac{14189}{380480}a^{13}+\frac{2331}{38048}a^{12}+\frac{3026053}{4603808}a^{11}+\frac{8299}{38048}a^{10}-\frac{10449}{19024}a^{9}+\frac{20188857}{4603808}a^{8}+\frac{104219}{38048}a^{7}-\frac{11715}{19024}a^{6}+\frac{583651}{144320}a^{5}+\frac{26931}{13120}a^{4}-\frac{135}{1312}a^{3}-\frac{42876839}{46038080}a^{2}-\frac{1802369}{380480}a-\frac{373077}{38048}$, $\frac{5857}{9207616}a^{17}+\frac{819}{261580}a^{16}-\frac{1823}{380480}a^{15}-\frac{124129}{9207616}a^{14}-\frac{10609}{261580}a^{13}+\frac{22453}{380480}a^{12}+\frac{623017}{4603808}a^{11}+\frac{15371}{52316}a^{10}-\frac{15987}{38048}a^{9}-\frac{1101985}{4603808}a^{8}+\frac{47365}{26158}a^{7}-\frac{110879}{38048}a^{6}-\frac{49901}{28864}a^{5}+\frac{683}{410}a^{4}-\frac{61407}{13120}a^{3}+\frac{1345923}{9207616}a^{2}-\frac{655109}{261580}a-\frac{2066527}{380480}$, $\frac{115569}{46038080}a^{17}-\frac{17}{3520}a^{16}-\frac{4153}{380480}a^{15}-\frac{1589019}{46038080}a^{14}+\frac{237}{3520}a^{13}+\frac{56003}{380480}a^{12}+\frac{1203289}{4603808}a^{11}-\frac{185}{352}a^{10}-\frac{42705}{38048}a^{9}+\frac{5901517}{4603808}a^{8}-\frac{771}{352}a^{7}-\frac{207709}{38048}a^{6}-\frac{32629}{144320}a^{5}-\frac{287}{320}a^{4}-\frac{51297}{13120}a^{3}-\frac{20246279}{46038080}a^{2}+\frac{7377}{3520}a-\frac{810497}{380480}$, $\frac{22993}{23019040}a^{17}-\frac{2253}{837056}a^{16}+\frac{37}{190240}a^{15}-\frac{150923}{23019040}a^{14}+\frac{29951}{837056}a^{13}-\frac{247}{190240}a^{12}+\frac{25035}{2301904}a^{11}-\frac{108753}{418528}a^{10}+\frac{361}{19024}a^{9}+\frac{2790827}{2301904}a^{8}-\frac{630885}{418528}a^{7}-\frac{575}{19024}a^{6}+\frac{245407}{72160}a^{5}-\frac{4495}{2624}a^{4}-\frac{2667}{6560}a^{3}+\frac{15758877}{23019040}a^{2}+\frac{58283}{837056}a+\frac{171213}{190240}$
|
| |
| Regulator: | \( 102332590.90594403 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 102332590.90594403 \cdot 12}{2\cdot\sqrt{712583513384965051151503760103}}\cr\approx \mathstrut & 11.1011034672095 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.11907.2, 3.1.243.1, 3.1.1323.1, 3.1.11907.1, 6.0.992436543.3, 6.0.12252303.1, 6.0.20253807.1, 6.0.992436543.1, 9.1.45579633110361.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.2137750540154895153454511280309.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{8}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{9}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.9.36b6.16 | $x^{18} + 18 x^{17} + 162 x^{16} + 960 x^{15} + 4176 x^{14} + 14112 x^{13} + 38304 x^{12} + 85248 x^{11} + 157536 x^{10} + 243392 x^{9} + 315072 x^{8} + 340992 x^{7} + 306435 x^{6} + 225810 x^{5} + 133695 x^{4} + 61572 x^{3} + 20925 x^{2} + 4770 x + 593$ | $9$ | $2$ | $36$ | not computed | not computed |
|
\(7\)
| 7.3.6.15a1.3 | $x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98736 x^{12} + 161280 x^{11} + 238464 x^{10} + 208640 x^{9} + 334080 x^{8} + 138240 x^{7} + 280320 x^{6} + 46080 x^{5} + 138240 x^{4} + 6144 x^{3} + 36864 x^{2} + 4103$ | $6$ | $3$ | $15$ | $C_6 \times C_3$ | $$[\ ]_{6}^{3}$$ |