Normalized defining polynomial
\( x^{18} - 37x^{15} + 245x^{12} + 3983x^{9} - 490x^{6} - 148x^{3} - 8 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[2, 8]$ |
| |
| Discriminant: |
\(178976732236484163896033906688\)
\(\medspace = 2^{12}\cdot 3^{21}\cdot 11^{15}\)
|
| |
| Root discriminant: | \(42.18\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}11^{5/6}\approx 42.18473888411525$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{33}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9}a^{6}+\frac{2}{9}$, $\frac{1}{9}a^{7}+\frac{2}{9}a$, $\frac{1}{9}a^{8}+\frac{2}{9}a^{2}$, $\frac{1}{9}a^{9}+\frac{2}{9}a^{3}$, $\frac{1}{9}a^{10}+\frac{2}{9}a^{4}$, $\frac{1}{27}a^{11}+\frac{1}{27}a^{10}+\frac{1}{27}a^{9}+\frac{1}{27}a^{8}+\frac{1}{27}a^{7}+\frac{1}{27}a^{6}+\frac{2}{27}a^{5}+\frac{2}{27}a^{4}+\frac{2}{27}a^{3}+\frac{2}{27}a^{2}+\frac{2}{27}a+\frac{2}{27}$, $\frac{1}{810}a^{12}+\frac{1}{90}a^{9}+\frac{31}{810}a^{6}-\frac{7}{90}a^{3}-\frac{133}{405}$, $\frac{1}{810}a^{13}+\frac{1}{90}a^{10}+\frac{31}{810}a^{7}-\frac{7}{90}a^{4}-\frac{133}{405}a$, $\frac{1}{4860}a^{14}+\frac{1}{2430}a^{13}-\frac{1}{2430}a^{12}-\frac{1}{60}a^{11}-\frac{1}{30}a^{10}+\frac{1}{30}a^{9}-\frac{239}{4860}a^{8}+\frac{31}{2430}a^{7}-\frac{31}{2430}a^{6}+\frac{9}{20}a^{5}-\frac{1}{10}a^{4}+\frac{1}{10}a^{3}+\frac{407}{2430}a^{2}-\frac{538}{1215}a+\frac{538}{1215}$, $\frac{1}{14580}a^{15}-\frac{1}{2916}a^{12}+\frac{17}{2916}a^{9}+\frac{223}{14580}a^{6}-\frac{2347}{7290}a^{3}-\frac{734}{3645}$, $\frac{1}{29160}a^{16}+\frac{13}{29160}a^{13}+\frac{247}{29160}a^{10}+\frac{781}{29160}a^{7}+\frac{1094}{3645}a^{4}-\frac{1931}{7290}a$, $\frac{1}{87480}a^{17}-\frac{1}{87480}a^{16}-\frac{1}{43740}a^{15}-\frac{1}{17496}a^{14}-\frac{49}{87480}a^{13}+\frac{1}{8748}a^{12}-\frac{307}{17496}a^{11}-\frac{3811}{87480}a^{10}+\frac{307}{8748}a^{9}-\frac{1397}{87480}a^{8}+\frac{4583}{87480}a^{7}+\frac{1397}{43740}a^{6}-\frac{3967}{43740}a^{5}-\frac{10531}{21870}a^{4}+\frac{3967}{21870}a^{3}-\frac{4417}{10935}a^{2}-\frac{1403}{4374}a-\frac{2101}{10935}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}$, which has order $18$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}\times C_{6}$, which has order $36$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{2717}{29160}a^{17}-\frac{100903}{29160}a^{14}+\frac{679523}{29160}a^{11}+\frac{10729433}{29160}a^{8}-\frac{351923}{3645}a^{5}-\frac{36751}{7290}a^{2}+1$, $\frac{1249}{5832}a^{17}+\frac{91}{1215}a^{16}-\frac{97}{4860}a^{15}-\frac{231721}{29160}a^{14}-\frac{1123}{405}a^{13}+\frac{1201}{1620}a^{12}+\frac{1554341}{29160}a^{11}+\frac{22369}{1215}a^{10}-\frac{24283}{4860}a^{9}+\frac{24711479}{29160}a^{8}+\frac{120653}{405}a^{7}-\frac{127631}{1620}a^{6}-\frac{2830691}{14580}a^{5}-\frac{52502}{1215}a^{4}+\frac{25661}{1215}a^{3}-\frac{54098}{3645}a^{2}-\frac{4114}{405}a+\frac{337}{405}$, $\frac{9}{40}a^{17}-\frac{9023}{1080}a^{14}+\frac{2249}{40}a^{11}+\frac{959881}{1080}a^{8}-\frac{4547}{20}a^{5}-\frac{110}{27}a^{2}$, $\frac{203}{2430}a^{17}-\frac{3013}{972}a^{14}+\frac{20213}{972}a^{11}+\frac{1606423}{4860}a^{8}-\frac{369329}{4860}a^{5}-\frac{11473}{2430}a^{2}$, $\frac{937}{43740}a^{17}-\frac{8}{2187}a^{16}-\frac{25}{8748}a^{15}-\frac{17341}{21870}a^{14}+\frac{1469}{10935}a^{13}+\frac{935}{8748}a^{12}+\frac{115031}{21870}a^{11}-\frac{9394}{10935}a^{10}-\frac{6499}{8748}a^{9}+\frac{1864187}{21870}a^{8}-\frac{161956}{10935}a^{7}-\frac{97105}{8748}a^{6}-\frac{508577}{43740}a^{5}-\frac{25432}{10935}a^{4}+\frac{12935}{2187}a^{3}-\frac{7409}{4374}a^{2}-\frac{7084}{10935}a+\frac{935}{2187}$, $\frac{7739}{17496}a^{17}-\frac{7631}{43740}a^{16}+\frac{1783}{21870}a^{15}-\frac{286879}{17496}a^{14}+\frac{282829}{43740}a^{13}-\frac{33037}{10935}a^{12}+\frac{1915907}{17496}a^{11}-\frac{1887449}{43740}a^{10}+\frac{220322}{10935}a^{9}+\frac{30692369}{17496}a^{8}-\frac{30275219}{43740}a^{7}+\frac{707641}{2187}a^{6}-\frac{2961029}{8748}a^{5}+\frac{1412623}{10935}a^{4}-\frac{256105}{4374}a^{3}-\frac{100712}{2187}a^{2}+\frac{199723}{10935}a-\frac{94807}{10935}$, $\frac{3683}{17496}a^{17}-\frac{509}{4374}a^{16}+\frac{2213}{43740}a^{15}-\frac{683411}{87480}a^{14}+\frac{47218}{10935}a^{13}-\frac{82093}{43740}a^{12}+\frac{4587871}{87480}a^{11}-\frac{316778}{10935}a^{10}+\frac{550013}{43740}a^{9}+\frac{72838789}{87480}a^{8}-\frac{5035142}{10935}a^{7}+\frac{8763311}{43740}a^{6}-\frac{8593801}{43740}a^{5}+\frac{2328047}{21870}a^{4}-\frac{971219}{21870}a^{3}-\frac{147508}{10935}a^{2}+\frac{100177}{10935}a-\frac{8270}{2187}$, $\frac{1831}{8748}a^{17}-\frac{476}{10935}a^{16}+\frac{38}{10935}a^{15}-\frac{67925}{8748}a^{14}+\frac{17563}{10935}a^{13}-\frac{1441}{10935}a^{12}+\frac{455173}{8748}a^{11}-\frac{114818}{10935}a^{10}+\frac{10601}{10935}a^{9}+\frac{7249555}{8748}a^{8}-\frac{381505}{2187}a^{7}+\frac{143033}{10935}a^{6}-\frac{402035}{2187}a^{5}+\frac{7136}{2187}a^{4}-\frac{160714}{10935}a^{3}-\frac{53750}{2187}a^{2}+\frac{61018}{10935}a-\frac{18967}{10935}$, $\frac{1825}{17496}a^{17}-\frac{964}{10935}a^{16}-\frac{16}{2187}a^{15}-\frac{338737}{87480}a^{14}+\frac{7147}{2187}a^{13}+\frac{2938}{10935}a^{12}+\frac{2276717}{87480}a^{11}-\frac{47735}{2187}a^{10}-\frac{18788}{10935}a^{9}+\frac{36074423}{87480}a^{8}-\frac{3822577}{10935}a^{7}-\frac{323912}{10935}a^{6}-\frac{4457567}{43740}a^{5}+\frac{734216}{10935}a^{4}-\frac{50864}{10935}a^{3}-\frac{127856}{10935}a^{2}+\frac{47684}{10935}a+\frac{7702}{10935}$
|
| |
| Regulator: | \( 28469096.209551767 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 28469096.209551767 \cdot 18}{2\cdot\sqrt{178976732236484163896033906688}}\cr\approx \mathstrut & 5.88459855102584 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 3.1.3267.1, 3.1.13068.1, 3.1.1452.1, 3.1.108.1, 6.2.352218537.1, 6.2.69574032.1, 6.2.5635496592.1, 6.2.46574352.1, 9.1.6694969951296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.0.59658910745494721298677968896.1 |
| Minimal sibling: | 18.0.59658910745494721298677968896.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{9}$ | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(11\)
| 11.1.6.5a1.2 | $x^{6} + 22$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |
| 11.2.6.10a1.2 | $x^{12} + 42 x^{11} + 747 x^{10} + 7280 x^{9} + 41955 x^{8} + 143682 x^{7} + 279509 x^{6} + 287364 x^{5} + 167820 x^{4} + 58240 x^{3} + 11952 x^{2} + 1344 x + 75$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ |