Normalized defining polynomial
\( x^{18} - 37 x^{15} + 245 x^{12} + 3983 x^{9} - 490 x^{6} - 148 x^{3} - 8 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(178976732236484163896033906688=2^{12}\cdot 3^{21}\cdot 11^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{9} a^{6} + \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{2}{9} a^{2}$, $\frac{1}{9} a^{9} + \frac{2}{9} a^{3}$, $\frac{1}{9} a^{10} + \frac{2}{9} a^{4}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{8} + \frac{1}{27} a^{7} + \frac{1}{27} a^{6} + \frac{2}{27} a^{5} + \frac{2}{27} a^{4} + \frac{2}{27} a^{3} + \frac{2}{27} a^{2} + \frac{2}{27} a + \frac{2}{27}$, $\frac{1}{810} a^{12} + \frac{1}{90} a^{9} + \frac{31}{810} a^{6} - \frac{7}{90} a^{3} - \frac{133}{405}$, $\frac{1}{810} a^{13} + \frac{1}{90} a^{10} + \frac{31}{810} a^{7} - \frac{7}{90} a^{4} - \frac{133}{405} a$, $\frac{1}{4860} a^{14} + \frac{1}{2430} a^{13} - \frac{1}{2430} a^{12} - \frac{1}{60} a^{11} - \frac{1}{30} a^{10} + \frac{1}{30} a^{9} - \frac{239}{4860} a^{8} + \frac{31}{2430} a^{7} - \frac{31}{2430} a^{6} + \frac{9}{20} a^{5} - \frac{1}{10} a^{4} + \frac{1}{10} a^{3} + \frac{407}{2430} a^{2} - \frac{538}{1215} a + \frac{538}{1215}$, $\frac{1}{14580} a^{15} - \frac{1}{2916} a^{12} + \frac{17}{2916} a^{9} + \frac{223}{14580} a^{6} - \frac{2347}{7290} a^{3} - \frac{734}{3645}$, $\frac{1}{29160} a^{16} + \frac{13}{29160} a^{13} + \frac{247}{29160} a^{10} + \frac{781}{29160} a^{7} + \frac{1094}{3645} a^{4} - \frac{1931}{7290} a$, $\frac{1}{87480} a^{17} - \frac{1}{87480} a^{16} - \frac{1}{43740} a^{15} - \frac{1}{17496} a^{14} - \frac{49}{87480} a^{13} + \frac{1}{8748} a^{12} - \frac{307}{17496} a^{11} - \frac{3811}{87480} a^{10} + \frac{307}{8748} a^{9} - \frac{1397}{87480} a^{8} + \frac{4583}{87480} a^{7} + \frac{1397}{43740} a^{6} - \frac{3967}{43740} a^{5} - \frac{10531}{21870} a^{4} + \frac{3967}{21870} a^{3} - \frac{4417}{10935} a^{2} - \frac{1403}{4374} a - \frac{2101}{10935}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28469096.209551767 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 3.1.3267.1, 3.1.13068.1, 3.1.1452.1, 3.1.108.1, 6.2.352218537.1, 6.2.69574032.1, 6.2.5635496592.1, 6.2.46574352.1, 9.1.6694969951296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $11$ | 11.6.5.1 | $x^{6} - 11$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |