Normalized defining polynomial
\( x^{18} - 4 x^{15} + 47 x^{12} - 296 x^{9} + 1215 x^{6} - 1512 x^{3} + 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-59658910745494721298677968896=-\,2^{12}\cdot 3^{20}\cdot 11^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{6} a^{3} - \frac{1}{2}$, $\frac{1}{18} a^{10} - \frac{1}{2} a^{7} - \frac{7}{18} a^{4} - \frac{1}{2} a$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{8} - \frac{7}{18} a^{5} + \frac{1}{6} a^{2}$, $\frac{1}{18} a^{12} + \frac{1}{9} a^{6} - \frac{1}{2}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{12} + \frac{1}{54} a^{11} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{10}{27} a^{7} + \frac{11}{54} a^{6} + \frac{11}{54} a^{5} + \frac{1}{3} a^{4} - \frac{5}{18} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{54} a^{14} - \frac{1}{54} a^{11} + \frac{1}{18} a^{9} - \frac{7}{54} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{7}{54} a^{5} - \frac{7}{18} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{266220} a^{15} + \frac{7229}{266220} a^{12} + \frac{2377}{133110} a^{9} - \frac{22526}{66555} a^{6} - \frac{9823}{29580} a^{3} - \frac{4519}{9860}$, $\frac{1}{798660} a^{16} + \frac{7229}{798660} a^{13} - \frac{1}{54} a^{12} - \frac{1}{54} a^{11} + \frac{2377}{399330} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{44029}{199665} a^{7} - \frac{11}{54} a^{6} - \frac{11}{54} a^{5} - \frac{9823}{88740} a^{4} + \frac{5}{18} a^{3} - \frac{1}{6} a^{2} - \frac{4519}{29580} a$, $\frac{1}{2395980} a^{17} + \frac{22019}{2395980} a^{14} + \frac{2377}{1197990} a^{11} - \frac{1}{18} a^{9} - \frac{81686}{598995} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{108497}{266220} a^{5} + \frac{7}{18} a^{3} + \frac{20131}{88740} a^{2} + \frac{1}{3} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7436740.6823236905 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3$ (as 18T12):
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3$ |
| Character table for $C_2\times C_3:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.3267.1, 3.1.13068.1, 3.1.1452.1, 3.1.108.1, 6.0.117406179.1, 6.0.23191344.1, 6.0.1878498864.1, 6.0.15524784.3, 9.1.6694969951296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $11$ | 11.6.5.2 | $x^{6} + 33$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |