Normalized defining polynomial
\( x^{18} - 4x^{15} + 47x^{12} - 296x^{9} + 1215x^{6} - 1512x^{3} + 729 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-59658910745494721298677968896\)
\(\medspace = -\,2^{12}\cdot 3^{20}\cdot 11^{15}\)
|
| |
| Root discriminant: | \(39.69\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}11^{5/6}\approx 42.18473888411525$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-11}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-11}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{6}-\frac{1}{6}a^{3}-\frac{1}{2}$, $\frac{1}{18}a^{10}-\frac{1}{2}a^{7}-\frac{7}{18}a^{4}-\frac{1}{2}a$, $\frac{1}{18}a^{11}-\frac{1}{6}a^{8}-\frac{7}{18}a^{5}+\frac{1}{6}a^{2}$, $\frac{1}{18}a^{12}+\frac{1}{9}a^{6}-\frac{1}{2}$, $\frac{1}{54}a^{13}+\frac{1}{54}a^{12}+\frac{1}{54}a^{11}-\frac{1}{18}a^{9}-\frac{1}{6}a^{8}+\frac{10}{27}a^{7}+\frac{11}{54}a^{6}+\frac{11}{54}a^{5}+\frac{1}{3}a^{4}-\frac{5}{18}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a$, $\frac{1}{54}a^{14}-\frac{1}{54}a^{11}+\frac{1}{18}a^{9}-\frac{7}{54}a^{8}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{7}{54}a^{5}-\frac{7}{18}a^{3}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{266220}a^{15}+\frac{7229}{266220}a^{12}+\frac{2377}{133110}a^{9}-\frac{22526}{66555}a^{6}-\frac{9823}{29580}a^{3}-\frac{4519}{9860}$, $\frac{1}{798660}a^{16}+\frac{7229}{798660}a^{13}-\frac{1}{54}a^{12}-\frac{1}{54}a^{11}+\frac{2377}{399330}a^{10}+\frac{1}{18}a^{9}-\frac{1}{6}a^{8}+\frac{44029}{199665}a^{7}-\frac{11}{54}a^{6}-\frac{11}{54}a^{5}-\frac{9823}{88740}a^{4}+\frac{5}{18}a^{3}-\frac{1}{6}a^{2}-\frac{4519}{29580}a$, $\frac{1}{2395980}a^{17}+\frac{22019}{2395980}a^{14}+\frac{2377}{1197990}a^{11}-\frac{1}{18}a^{9}-\frac{81686}{598995}a^{8}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{108497}{266220}a^{5}+\frac{7}{18}a^{3}+\frac{20131}{88740}a^{2}+\frac{1}{3}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}$, which has order $18$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{6}$, which has order $18$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4499}{1197990}a^{17}-\frac{14729}{1197990}a^{14}+\frac{201571}{1197990}a^{11}-\frac{1174591}{1197990}a^{8}+\frac{28831}{7395}a^{5}-\frac{65153}{22185}a^{2}-1$, $\frac{8329}{798660}a^{16}-\frac{29329}{798660}a^{13}+\frac{186493}{399330}a^{10}-\frac{569924}{199665}a^{7}+\frac{988513}{88740}a^{4}-\frac{284141}{29580}a$, $\frac{167}{79866}a^{16}-\frac{550}{39933}a^{13}+\frac{8569}{79866}a^{10}-\frac{66577}{79866}a^{7}+\frac{16154}{4437}a^{4}-\frac{19117}{2958}a$, $\frac{755}{159732}a^{17}+\frac{1997}{399330}a^{16}+\frac{7}{7830}a^{15}-\frac{2573}{159732}a^{14}-\frac{3061}{199665}a^{13}-\frac{1}{3915}a^{12}+\frac{16877}{79866}a^{11}+\frac{43649}{199665}a^{10}+\frac{109}{3915}a^{9}-\frac{50395}{39933}a^{8}-\frac{252704}{199665}a^{7}-\frac{569}{3915}a^{6}+\frac{263257}{53244}a^{5}+\frac{70643}{14790}a^{4}+\frac{487}{2610}a^{3}-\frac{21977}{5916}a^{2}-\frac{4943}{2465}a+\frac{61}{145}$, $\frac{3413}{598995}a^{17}-\frac{1997}{399330}a^{16}+\frac{601}{133110}a^{15}-\frac{11933}{598995}a^{14}+\frac{3061}{199665}a^{13}-\frac{583}{66555}a^{12}+\frac{304739}{1197990}a^{11}-\frac{43649}{199665}a^{10}+\frac{24869}{133110}a^{9}-\frac{1849109}{1197990}a^{8}+\frac{252704}{199665}a^{7}-\frac{127099}{133110}a^{6}+\frac{797327}{133110}a^{5}-\frac{70643}{14790}a^{4}+\frac{69098}{22185}a^{3}-\frac{199349}{44370}a^{2}+\frac{7408}{2465}a+\frac{511}{4930}$, $\frac{20333}{2395980}a^{17}+\frac{350}{39933}a^{16}+\frac{1033}{133110}a^{15}-\frac{69713}{2395980}a^{14}-\frac{2317}{79866}a^{13}-\frac{643}{22185}a^{12}+\frac{456311}{1197990}a^{11}+\frac{31109}{79866}a^{10}+\frac{22486}{66555}a^{9}-\frac{1372513}{598995}a^{8}-\frac{187199}{79866}a^{7}-\frac{48317}{22185}a^{6}+\frac{2408801}{266220}a^{5}+\frac{80623}{8874}a^{4}+\frac{375953}{44370}a^{3}-\frac{625597}{88740}a^{2}-\frac{3815}{493}a-\frac{18196}{2465}$, $\frac{4499}{598995}a^{17}+\frac{16}{2465}a^{16}+\frac{245}{53244}a^{15}-\frac{14729}{598995}a^{14}-\frac{973}{44370}a^{13}-\frac{737}{53244}a^{12}+\frac{201571}{598995}a^{11}+\frac{6701}{22185}a^{10}+\frac{5555}{26622}a^{9}-\frac{1174591}{598995}a^{8}-\frac{38656}{22185}a^{7}-\frac{15511}{13311}a^{6}+\frac{57662}{7395}a^{5}+\frac{156412}{22185}a^{4}+\frac{9595}{1972}a^{3}-\frac{130306}{22185}a^{2}-\frac{31901}{4930}a-\frac{9737}{1972}$, $\frac{551}{20655}a^{17}+\frac{419}{14790}a^{16}+\frac{1225}{53244}a^{15}-\frac{1961}{20655}a^{14}-\frac{4067}{44370}a^{13}-\frac{3685}{53244}a^{12}+\frac{24574}{20655}a^{11}+\frac{27424}{22185}a^{10}+\frac{27775}{26622}a^{9}-\frac{150784}{20655}a^{8}-\frac{164609}{22185}a^{7}-\frac{77555}{13311}a^{6}+\frac{21529}{765}a^{5}+\frac{1222171}{44370}a^{4}+\frac{47975}{1972}a^{3}-\frac{16129}{765}a^{2}-\frac{106599}{4930}a-\frac{42769}{1972}$
|
| |
| Regulator: | \( 7436740.6823236905 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 7436740.6823236905 \cdot 18}{2\cdot\sqrt{59658910745494721298677968896}}\cr\approx \mathstrut & 4.18221449390943 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.3267.1, 3.1.13068.1, 3.1.1452.1, 3.1.108.1, 6.0.117406179.1, 6.0.23191344.1, 6.0.1878498864.1, 6.0.15524784.3, 9.1.6694969951296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.178976732236484163896033906688.2 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{9}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.3.0.1}{3} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.2.0.1}{2} }^{9}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(11\)
| 11.1.6.5a1.1 | $x^{6} + 11$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |
| 11.2.6.10a1.2 | $x^{12} + 42 x^{11} + 747 x^{10} + 7280 x^{9} + 41955 x^{8} + 143682 x^{7} + 279509 x^{6} + 287364 x^{5} + 167820 x^{4} + 58240 x^{3} + 11952 x^{2} + 1344 x + 75$ | $6$ | $2$ | $10$ | $D_6$ | $$[\ ]_{6}^{2}$$ |