Properties

Label 18.2.116...456.1
Degree $18$
Signature $[2, 8]$
Discriminant $1.165\times 10^{36}$
Root discriminant \(100.85\)
Ramified primes $2,3,13$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_3^4:(C_6^2:C_4)$ (as 18T576)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368)
 
Copy content gp:K = bnfinit(y^18 - 57*y^16 - 56*y^15 + 1017*y^14 + 2532*y^13 - 1491*y^12 - 24102*y^11 - 32877*y^10 - 46124*y^9 - 45630*y^8 - 363246*y^7 - 213343*y^6 + 1137708*y^5 + 5266716*y^4 + 4425096*y^3 + 1727856*y^2 - 1314144*y + 4034368, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368)
 

\( x^{18} - 57 x^{16} - 56 x^{15} + 1017 x^{14} + 2532 x^{13} - 1491 x^{12} - 24102 x^{11} - 32877 x^{10} + \cdots + 4034368 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(1165498283698428929755771705757331456\) \(\medspace = 2^{12}\cdot 3^{33}\cdot 13^{15}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(100.85\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(13\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{39}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{52}a^{12}+\frac{2}{13}a^{10}-\frac{1}{13}a^{9}-\frac{23}{52}a^{8}-\frac{4}{13}a^{7}-\frac{11}{26}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{104}a^{13}+\frac{1}{13}a^{11}-\frac{1}{26}a^{10}-\frac{23}{104}a^{9}-\frac{2}{13}a^{8}+\frac{15}{52}a^{7}-\frac{1}{4}a^{6}-\frac{3}{8}a^{5}+\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{312}a^{14}+\frac{1}{312}a^{13}-\frac{1}{156}a^{12}-\frac{2}{13}a^{11}-\frac{1}{104}a^{10}+\frac{35}{104}a^{9}+\frac{35}{78}a^{8}+\frac{1}{39}a^{7}+\frac{155}{312}a^{6}+\frac{11}{24}a^{5}-\frac{1}{24}a^{4}-\frac{1}{24}a^{3}-\frac{1}{12}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{624}a^{15}-\frac{1}{624}a^{14}+\frac{1}{312}a^{13}+\frac{1}{156}a^{12}+\frac{47}{208}a^{11}-\frac{51}{208}a^{10}-\frac{11}{78}a^{9}-\frac{14}{39}a^{8}-\frac{137}{624}a^{7}+\frac{181}{624}a^{6}+\frac{7}{48}a^{5}+\frac{13}{48}a^{4}+\frac{3}{8}a^{3}+\frac{5}{12}a^{2}+\frac{1}{6}a+\frac{1}{3}$, $\frac{1}{624}a^{16}-\frac{1}{624}a^{14}-\frac{1}{312}a^{13}+\frac{5}{624}a^{12}+\frac{3}{52}a^{11}-\frac{115}{624}a^{10}+\frac{4}{13}a^{9}+\frac{271}{624}a^{8}+\frac{35}{78}a^{7}+\frac{83}{312}a^{6}+\frac{1}{3}a^{5}+\frac{7}{16}a^{4}-\frac{1}{24}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{54\cdots 84}a^{17}-\frac{20\cdots 21}{20\cdots 84}a^{16}-\frac{16\cdots 41}{54\cdots 84}a^{15}-\frac{13\cdots 03}{27\cdots 92}a^{14}-\frac{89\cdots 07}{54\cdots 84}a^{13}-\frac{13\cdots 07}{27\cdots 92}a^{12}-\frac{85\cdots 95}{54\cdots 84}a^{11}-\frac{27\cdots 50}{65\cdots 87}a^{10}+\frac{56\cdots 19}{41\cdots 68}a^{9}-\frac{56\cdots 53}{20\cdots 84}a^{8}+\frac{17\cdots 35}{20\cdots 84}a^{7}-\frac{78\cdots 37}{20\cdots 84}a^{6}-\frac{49\cdots 77}{13\cdots 56}a^{5}-\frac{14\cdots 97}{53\cdots 56}a^{4}-\frac{65\cdots 99}{67\cdots 32}a^{3}-\frac{13\cdots 51}{40\cdots 92}a^{2}-\frac{42\cdots 23}{10\cdots 98}a-\frac{17\cdots 65}{10\cdots 98}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $9$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{12\cdots 47}{13\cdots 56}a^{17}-\frac{20\cdots 05}{69\cdots 28}a^{16}-\frac{72\cdots 87}{13\cdots 56}a^{15}+\frac{81\cdots 85}{69\cdots 28}a^{14}+\frac{15\cdots 07}{13\cdots 56}a^{13}-\frac{49\cdots 79}{69\cdots 28}a^{12}-\frac{12\cdots 45}{13\cdots 56}a^{11}-\frac{63\cdots 65}{34\cdots 64}a^{10}+\frac{51\cdots 61}{13\cdots 56}a^{9}+\frac{55\cdots 31}{69\cdots 28}a^{8}+\frac{61\cdots 57}{69\cdots 28}a^{7}-\frac{10\cdots 47}{69\cdots 28}a^{6}+\frac{53\cdots 71}{10\cdots 12}a^{5}+\frac{13\cdots 61}{53\cdots 56}a^{4}+\frac{81\cdots 29}{13\cdots 64}a^{3}-\frac{11\cdots 33}{13\cdots 64}a^{2}-\frac{52\cdots 11}{33\cdots 66}a-\frac{19\cdots 75}{33\cdots 66}$, $\frac{32\cdots 89}{13\cdots 56}a^{17}-\frac{97\cdots 69}{69\cdots 28}a^{16}-\frac{56\cdots 99}{41\cdots 68}a^{15}-\frac{21\cdots 83}{53\cdots 56}a^{14}+\frac{36\cdots 05}{13\cdots 56}a^{13}+\frac{86\cdots 27}{20\cdots 84}a^{12}-\frac{13\cdots 63}{13\cdots 56}a^{11}-\frac{94\cdots 93}{17\cdots 32}a^{10}-\frac{14\cdots 11}{41\cdots 68}a^{9}-\frac{70\cdots 57}{69\cdots 28}a^{8}-\frac{40\cdots 05}{69\cdots 28}a^{7}-\frac{39\cdots 37}{69\cdots 28}a^{6}-\frac{23\cdots 39}{10\cdots 12}a^{5}+\frac{23\cdots 89}{53\cdots 56}a^{4}+\frac{39\cdots 83}{40\cdots 92}a^{3}+\frac{33\cdots 43}{13\cdots 64}a^{2}-\frac{40\cdots 59}{33\cdots 66}a+\frac{50\cdots 79}{10\cdots 98}$, $\frac{29\cdots 93}{16\cdots 52}a^{17}+\frac{41\cdots 39}{10\cdots 88}a^{16}-\frac{26\cdots 01}{20\cdots 76}a^{15}-\frac{32\cdots 43}{10\cdots 88}a^{14}+\frac{64\cdots 53}{20\cdots 76}a^{13}+\frac{88\cdots 25}{10\cdots 88}a^{12}-\frac{48\cdots 67}{20\cdots 76}a^{11}-\frac{18\cdots 51}{26\cdots 72}a^{10}+\frac{68\cdots 15}{20\cdots 76}a^{9}+\frac{96\cdots 39}{80\cdots 76}a^{8}-\frac{44\cdots 17}{80\cdots 76}a^{7}-\frac{66\cdots 45}{80\cdots 76}a^{6}+\frac{25\cdots 25}{16\cdots 52}a^{5}+\frac{37\cdots 81}{80\cdots 76}a^{4}+\frac{59\cdots 69}{20\cdots 44}a^{3}-\frac{13\cdots 11}{20\cdots 44}a^{2}+\frac{33\cdots 77}{50\cdots 86}a+\frac{16\cdots 95}{50\cdots 86}$, $\frac{90\cdots 65}{17\cdots 62}a^{17}-\frac{71\cdots 89}{10\cdots 92}a^{16}-\frac{14\cdots 77}{45\cdots 32}a^{15}+\frac{16\cdots 77}{11\cdots 08}a^{14}+\frac{46\cdots 41}{68\cdots 48}a^{13}+\frac{57\cdots 51}{13\cdots 96}a^{12}-\frac{63\cdots 23}{13\cdots 96}a^{11}-\frac{48\cdots 41}{52\cdots 96}a^{10}+\frac{22\cdots 69}{13\cdots 64}a^{9}+\frac{22\cdots 85}{10\cdots 92}a^{8}-\frac{10\cdots 13}{10\cdots 92}a^{7}-\frac{87\cdots 61}{10\cdots 92}a^{6}+\frac{48\cdots 33}{10\cdots 92}a^{5}+\frac{30\cdots 83}{67\cdots 32}a^{4}+\frac{25\cdots 71}{40\cdots 92}a^{3}-\frac{54\cdots 88}{16\cdots 33}a^{2}+\frac{27\cdots 55}{50\cdots 99}a-\frac{50\cdots 40}{50\cdots 99}$, $\frac{18\cdots 33}{54\cdots 84}a^{17}+\frac{18\cdots 53}{20\cdots 84}a^{16}-\frac{38\cdots 79}{18\cdots 28}a^{15}-\frac{64\cdots 47}{27\cdots 92}a^{14}+\frac{24\cdots 25}{54\cdots 84}a^{13}+\frac{33\cdots 75}{27\cdots 92}a^{12}-\frac{10\cdots 19}{54\cdots 84}a^{11}-\frac{45\cdots 21}{26\cdots 48}a^{10}-\frac{33\cdots 11}{13\cdots 56}a^{9}+\frac{75\cdots 49}{20\cdots 84}a^{8}+\frac{46\cdots 21}{20\cdots 84}a^{7}+\frac{57\cdots 93}{20\cdots 84}a^{6}-\frac{20\cdots 05}{13\cdots 56}a^{5}-\frac{56\cdots 57}{53\cdots 56}a^{4}-\frac{17\cdots 15}{20\cdots 96}a^{3}-\frac{69\cdots 13}{40\cdots 92}a^{2}+\frac{12\cdots 63}{50\cdots 99}a-\frac{84\cdots 11}{10\cdots 98}$, $\frac{29\cdots 41}{90\cdots 64}a^{17}-\frac{61\cdots 73}{65\cdots 87}a^{16}-\frac{15\cdots 93}{90\cdots 64}a^{15}+\frac{76\cdots 41}{22\cdots 16}a^{14}+\frac{78\cdots 23}{27\cdots 92}a^{13}-\frac{26\cdots 03}{22\cdots 16}a^{12}-\frac{98\cdots 91}{90\cdots 64}a^{11}-\frac{36\cdots 59}{80\cdots 84}a^{10}+\frac{32\cdots 07}{69\cdots 28}a^{9}-\frac{24\cdots 69}{17\cdots 32}a^{8}+\frac{49\cdots 69}{34\cdots 64}a^{7}-\frac{30\cdots 93}{34\cdots 64}a^{6}+\frac{11\cdots 25}{69\cdots 28}a^{5}+\frac{66\cdots 59}{20\cdots 96}a^{4}+\frac{78\cdots 65}{16\cdots 33}a^{3}-\frac{10\cdots 93}{67\cdots 32}a^{2}+\frac{59\cdots 05}{50\cdots 99}a+\frac{34\cdots 73}{16\cdots 33}$, $\frac{30\cdots 75}{27\cdots 92}a^{17}+\frac{59\cdots 93}{26\cdots 48}a^{16}-\frac{54\cdots 79}{90\cdots 64}a^{15}-\frac{83\cdots 15}{45\cdots 32}a^{14}+\frac{21\cdots 75}{27\cdots 92}a^{13}+\frac{30\cdots 29}{68\cdots 48}a^{12}+\frac{20\cdots 41}{27\cdots 92}a^{11}-\frac{64\cdots 59}{52\cdots 96}a^{10}-\frac{33\cdots 61}{53\cdots 56}a^{9}-\frac{94\cdots 29}{52\cdots 96}a^{8}-\frac{21\cdots 45}{52\cdots 96}a^{7}-\frac{33\cdots 29}{26\cdots 48}a^{6}-\frac{58\cdots 67}{20\cdots 84}a^{5}-\frac{11\cdots 95}{26\cdots 28}a^{4}-\frac{12\cdots 91}{40\cdots 92}a^{3}-\frac{78\cdots 25}{67\cdots 32}a^{2}-\frac{17\cdots 13}{50\cdots 99}a-\frac{11\cdots 03}{50\cdots 99}$, $\frac{23\cdots 39}{90\cdots 64}a^{17}-\frac{11\cdots 91}{10\cdots 92}a^{16}-\frac{14\cdots 91}{90\cdots 64}a^{15}-\frac{35\cdots 01}{13\cdots 96}a^{14}+\frac{91\cdots 85}{27\cdots 92}a^{13}+\frac{40\cdots 51}{13\cdots 96}a^{12}-\frac{15\cdots 37}{90\cdots 64}a^{11}-\frac{18\cdots 43}{52\cdots 96}a^{10}-\frac{30\cdots 67}{69\cdots 28}a^{9}+\frac{90\cdots 85}{10\cdots 92}a^{8}-\frac{24\cdots 93}{10\cdots 92}a^{7}-\frac{57\cdots 89}{10\cdots 92}a^{6}-\frac{61\cdots 51}{20\cdots 84}a^{5}+\frac{13\cdots 85}{26\cdots 28}a^{4}+\frac{10\cdots 71}{20\cdots 96}a^{3}+\frac{46\cdots 35}{20\cdots 96}a^{2}-\frac{13\cdots 13}{50\cdots 99}a+\frac{24\cdots 34}{50\cdots 99}$, $\frac{73\cdots 91}{18\cdots 28}a^{17}-\frac{76\cdots 49}{20\cdots 84}a^{16}-\frac{43\cdots 83}{18\cdots 28}a^{15}-\frac{21\cdots 87}{90\cdots 64}a^{14}+\frac{25\cdots 53}{54\cdots 84}a^{13}+\frac{65\cdots 11}{90\cdots 64}a^{12}-\frac{42\cdots 21}{18\cdots 28}a^{11}-\frac{12\cdots 35}{10\cdots 92}a^{10}-\frac{46\cdots 19}{13\cdots 56}a^{9}+\frac{11\cdots 13}{69\cdots 28}a^{8}+\frac{16\cdots 83}{53\cdots 56}a^{7}-\frac{71\cdots 97}{69\cdots 28}a^{6}+\frac{15\cdots 47}{13\cdots 56}a^{5}+\frac{13\cdots 31}{16\cdots 68}a^{4}+\frac{25\cdots 09}{13\cdots 64}a^{3}-\frac{17\cdots 59}{13\cdots 64}a^{2}-\frac{25\cdots 18}{50\cdots 99}a-\frac{19\cdots 23}{33\cdots 66}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 51867970070.3 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{8}\cdot 51867970070.3 \cdot 3}{2\cdot\sqrt{1165498283698428929755771705757331456}}\cr\approx \mathstrut & 0.700218578805 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 57*x^16 - 56*x^15 + 1017*x^14 + 2532*x^13 - 1491*x^12 - 24102*x^11 - 32877*x^10 - 46124*x^9 - 45630*x^8 - 363246*x^7 - 213343*x^6 + 1137708*x^5 + 5266716*x^4 + 4425096*x^3 + 1727856*x^2 - 1314144*x + 4034368); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^4:(C_6^2:C_4)$ (as 18T576):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 11664
The 49 conjugacy class representatives for $C_3^4:(C_6^2:C_4)$
Character table for $C_3^4:(C_6^2:C_4)$

Intermediate fields

\(\Q(\sqrt{13}) \), 6.2.2313441.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 18 sibling: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }$ R ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ ${\href{/padicField/37.4.0.1}{4} }^{4}{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.3.0.1}{3} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.1.0a1.1$x^{2} + x + 1$$1$$2$$0$$C_2$$$[\ ]^{2}$$
2.2.2.4a2.2$x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$$2$$2$$4$$D_{4}$$$[2, 2]^{2}$$
2.4.1.0a1.1$x^{4} + x + 1$$1$$4$$0$$C_4$$$[\ ]^{4}$$
2.4.2.8a3.1$x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$$2$$4$$8$$C_2^2:C_4$$$[2, 2]^{4}$$
\(3\) Copy content Toggle raw display 3.1.9.21a2.14$x^{9} + 9 x^{7} + 6 x^{6} + 9 x^{4} + 21$$9$$1$$21$$C_3^2 : S_3 $$$[2, \frac{5}{2}, \frac{17}{6}]_{2}$$
3.3.3.12a1.1$x^{9} + 6 x^{7} + 6 x^{6} + 12 x^{5} + 24 x^{4} + 17 x^{3} + 24 x^{2} + 18 x + 7$$3$$3$$12$$S_3\times C_3$$$[2]^{6}$$
\(13\) Copy content Toggle raw display 13.1.2.1a1.1$x^{2} + 13$$2$$1$$1$$C_2$$$[\ ]_{2}$$
13.1.4.3a1.1$x^{4} + 13$$4$$1$$3$$C_4$$$[\ ]_{4}$$
13.1.12.11a1.1$x^{12} + 13$$12$$1$$11$$C_{12}$$$[\ ]_{12}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)