Normalized defining polynomial
\( x^{18} - 30x^{16} + 298x^{14} - 1453x^{12} + 3945x^{10} - 6162x^{8} + 5379x^{6} - 2364x^{4} + 397x^{2} - 4 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(404306392283083098720059869167616\)
\(\medspace = 2^{16}\cdot 13^{8}\cdot 229^{8}\)
|
| |
| Root discriminant: | \(64.79\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(13\), \(229\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{59119}a^{16}-\frac{8813}{59119}a^{14}+\frac{18106}{59119}a^{12}+\frac{3659}{59119}a^{10}+\frac{27684}{59119}a^{8}+\frac{1713}{59119}a^{6}-\frac{23674}{59119}a^{4}+\frac{4855}{59119}a^{2}-\frac{16269}{59119}$, $\frac{1}{236476}a^{17}-\frac{1}{118238}a^{16}+\frac{25153}{118238}a^{15}-\frac{25153}{59119}a^{14}+\frac{9053}{118238}a^{13}-\frac{9053}{59119}a^{12}+\frac{3659}{236476}a^{11}-\frac{3659}{118238}a^{10}-\frac{31435}{236476}a^{9}+\frac{31435}{118238}a^{8}-\frac{28703}{118238}a^{7}+\frac{28703}{59119}a^{6}-\frac{82793}{236476}a^{5}-\frac{35445}{118238}a^{4}-\frac{13566}{59119}a^{3}+\frac{27132}{59119}a^{2}+\frac{101969}{236476}a+\frac{16269}{118238}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{8969}{59119}a^{16}-\frac{238170}{59119}a^{14}+\frac{1825510}{59119}a^{12}-\frac{6023612}{59119}a^{10}+\frac{8924965}{59119}a^{8}-\frac{4381849}{59119}a^{6}-\frac{1513752}{59119}a^{4}+\frac{1392648}{59119}a^{2}-\frac{247445}{59119}$, $\frac{1405}{59119}a^{16}-\frac{26394}{59119}a^{14}+\frac{17760}{59119}a^{12}+\frac{766089}{59119}a^{10}-\frac{3019351}{59119}a^{8}+\frac{4239454}{59119}a^{6}-\frac{2401852}{59119}a^{4}+\frac{672899}{59119}a^{2}-\frac{38011}{59119}$, $\frac{44313}{118238}a^{17}-\frac{615927}{59119}a^{15}+\frac{5245646}{59119}a^{13}-\frac{41228093}{118238}a^{11}+\frac{83576989}{118238}a^{9}-\frac{43659695}{59119}a^{7}+\frac{42448135}{118238}a^{5}-\frac{3544353}{59119}a^{3}+\frac{205365}{118238}a$, $\frac{4455}{59119}a^{16}-\frac{125137}{59119}a^{14}+\frac{1088056}{59119}a^{12}-\frac{4390805}{59119}a^{10}+\frac{9291669}{59119}a^{8}-\frac{10636356}{59119}a^{6}+\frac{6385478}{59119}a^{4}-\frac{1604742}{59119}a^{2}+\frac{119737}{59119}$, $\frac{20265}{118238}a^{17}-\frac{294068}{59119}a^{15}+\frac{2732262}{59119}a^{13}-\frac{24106143}{118238}a^{11}+\frac{56199119}{118238}a^{9}-\frac{34165236}{59119}a^{7}+\frac{37242045}{118238}a^{5}-\frac{2447159}{59119}a^{3}-\frac{43741}{118238}a$, $\frac{45797}{118238}a^{17}-\frac{652083}{59119}a^{15}+\frac{5851475}{59119}a^{13}-\frac{49868459}{118238}a^{11}+\frac{114373339}{118238}a^{9}-\frac{72657577}{59119}a^{7}+\frac{99186845}{118238}a^{5}-\frac{16554382}{59119}a^{3}+\frac{4202813}{118238}a$, $\frac{9366}{59119}a^{16}-\frac{248910}{59119}a^{14}+\frac{1919312}{59119}a^{12}-\frac{6521916}{59119}a^{10}+\frac{10692949}{59119}a^{8}-\frac{8076594}{59119}a^{6}+\frac{2330326}{59119}a^{4}-\frac{167938}{59119}a^{2}-\frac{25791}{59119}$, $\frac{11541}{59119}a^{16}-\frac{321748}{59119}a^{14}+\frac{2754274}{59119}a^{12}-\frac{10860343}{59119}a^{10}+\frac{21955117}{59119}a^{8}-\frac{22677709}{59119}a^{6}+\frac{11199875}{59119}a^{4}-\frac{2614493}{59119}a^{2}+\frac{119653}{59119}$, $\frac{10969}{236476}a^{17}-\frac{53341}{118238}a^{16}-\frac{182473}{118238}a^{15}+\frac{728960}{59119}a^{14}+\frac{2110721}{118238}a^{13}-\frac{5983100}{59119}a^{12}-\frac{23239997}{236476}a^{11}+\frac{44493707}{118238}a^{10}+\frac{67367153}{236476}a^{9}-\frac{82843581}{118238}a^{8}-\frac{51645419}{118238}a^{7}+\frac{37405188}{59119}a^{6}+\frac{76529647}{236476}a^{5}-\frac{26649675}{118238}a^{4}-\frac{4968927}{59119}a^{3}+\frac{546963}{59119}a^{2}-\frac{979423}{236476}a+\frac{56047}{118238}$, $\frac{87547}{236476}a^{17}-\frac{63955}{118238}a^{16}-\frac{1177201}{118238}a^{15}+\frac{854660}{59119}a^{14}+\frac{9354479}{118238}a^{13}-\frac{6712695}{59119}a^{12}-\frac{67249691}{236476}a^{11}+\frac{47986285}{118238}a^{10}+\frac{120434027}{236476}a^{9}-\frac{87944361}{118238}a^{8}-\frac{49845763}{118238}a^{7}+\frac{41556953}{59119}a^{6}+\frac{20520517}{236476}a^{5}-\frac{37389247}{118238}a^{4}+\frac{3171415}{59119}a^{3}+\frac{3158598}{59119}a^{2}-\frac{3199621}{236476}a+\frac{107733}{118238}$, $\frac{75783}{118238}a^{17}-\frac{47578}{59119}a^{16}-\frac{1068260}{59119}a^{15}+\frac{1333584}{59119}a^{14}+\frac{9387425}{59119}a^{13}-\frac{11552524}{59119}a^{12}-\frac{77660479}{118238}a^{11}+\frac{46425968}{59119}a^{10}+\frac{171347481}{118238}a^{9}-\frac{96696716}{59119}a^{8}-\frac{104142641}{59119}a^{7}+\frac{104309903}{59119}a^{6}+\frac{137508345}{118238}a^{5}-\frac{52826002}{59119}a^{4}-\frac{23219303}{59119}a^{3}+\frac{9091069}{59119}a^{2}+\frac{6338851}{118238}a+\frac{178772}{59119}$, $\frac{53949}{236476}a^{17}-\frac{333}{118238}a^{16}-\frac{747757}{118238}a^{15}+\frac{18949}{59119}a^{14}+\frac{6343971}{118238}a^{13}-\frac{413413}{59119}a^{12}-\frac{49954505}{236476}a^{11}+\frac{5875833}{118238}a^{10}+\frac{102040213}{236476}a^{9}-\frac{18973407}{118238}a^{8}-\frac{53260399}{118238}a^{7}+\frac{15174404}{59119}a^{6}+\frac{46308427}{236476}a^{5}-\frac{22799319}{118238}a^{4}+\frac{612276}{59119}a^{3}+\frac{2945699}{59119}a^{2}-\frac{5927507}{236476}a+\frac{215105}{118238}$, $\frac{4514}{59119}a^{17}+\frac{4455}{59119}a^{16}-\frac{113033}{59119}a^{15}-\frac{125137}{59119}a^{14}+\frac{737454}{59119}a^{13}+\frac{1088056}{59119}a^{12}-\frac{1632807}{59119}a^{11}-\frac{4390805}{59119}a^{10}-\frac{366704}{59119}a^{9}+\frac{9291669}{59119}a^{8}+\frac{6254507}{59119}a^{7}-\frac{10636356}{59119}a^{6}-\frac{7899230}{59119}a^{5}+\frac{6385478}{59119}a^{4}+\frac{2997390}{59119}a^{3}-\frac{1663861}{59119}a^{2}-\frac{130706}{59119}a+\frac{1499}{59119}$, $\frac{28949}{118238}a^{17}-\frac{7682}{59119}a^{16}-\frac{428359}{59119}a^{15}+\frac{187568}{59119}a^{14}+\frac{4139100}{59119}a^{13}-\frac{1106546}{59119}a^{12}-\frac{38680683}{118238}a^{11}+\frac{1273705}{59119}a^{10}+\frac{98321849}{118238}a^{9}+\frac{7372430}{59119}a^{8}-\frac{68820118}{59119}a^{7}-\frac{25160423}{59119}a^{6}+\frac{97810767}{118238}a^{5}+\frac{27681316}{59119}a^{4}-\frac{13409247}{59119}a^{3}-\frac{9864894}{59119}a^{2}+\frac{443625}{118238}a+\frac{119130}{59119}$, $\frac{37251}{236476}a^{17}-\frac{26667}{118238}a^{16}-\frac{534699}{118238}a^{15}+\frac{363837}{59119}a^{14}+\frac{4866285}{118238}a^{13}-\frac{2989424}{59119}a^{12}-\frac{42001495}{236476}a^{11}+\frac{22673493}{118238}a^{10}+\frac{97708555}{236476}a^{9}-\frac{44606001}{118238}a^{8}-\frac{63601263}{118238}a^{7}+\frac{22947380}{59119}a^{6}+\frac{90804733}{236476}a^{5}-\frac{23073653}{118238}a^{4}-\frac{7860681}{59119}a^{3}+\frac{2336363}{59119}a^{2}+\frac{3007419}{236476}a+\frac{30201}{118238}$, $\frac{231}{236476}a^{17}+\frac{24167}{118238}a^{16}+\frac{16681}{118238}a^{15}-\frac{343721}{59119}a^{14}-\frac{509993}{118238}a^{13}+\frac{3058620}{59119}a^{12}+\frac{8412461}{236476}a^{11}-\frac{25199665}{118238}a^{10}-\frac{31145561}{236476}a^{9}+\frac{53314843}{118238}a^{8}+\frac{29550435}{118238}a^{7}-\frac{28754008}{59119}a^{6}-\frac{58380199}{236476}a^{5}+\frac{28578601}{118238}a^{4}+\frac{6798246}{59119}a^{3}-\frac{2315856}{59119}a^{2}-\frac{4349329}{236476}a-\frac{149811}{118238}$, $\frac{42029}{236476}a^{17}-\frac{29175}{118238}a^{16}-\frac{601711}{118238}a^{15}+\frac{419205}{59119}a^{14}+\frac{5437601}{118238}a^{13}-\frac{3820318}{59119}a^{12}-\frac{46038109}{236476}a^{11}+\frac{32887753}{118238}a^{10}+\frac{100748573}{236476}a^{9}-\frac{74782457}{118238}a^{8}-\frac{54365553}{118238}a^{7}+\frac{44801592}{59119}a^{6}+\frac{40001787}{236476}a^{5}-\frac{50013001}{118238}a^{4}+\frac{3052410}{59119}a^{3}+\frac{4051901}{59119}a^{2}-\frac{6147823}{236476}a+\frac{277219}{118238}$
|
| |
| Regulator: | \( 72756672849.4 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 72756672849.4 \cdot 1}{2\cdot\sqrt{404306392283083098720059869167616}}\cr\approx \mathstrut & 0.474271964426 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2:A_4^2.S_4$ (as 18T588):
| A solvable group of order 13824 |
| The 44 conjugacy class representatives for $C_2^2:A_4^2.S_4$ |
| Character table for $C_2^2:A_4^2.S_4$ |
Intermediate fields
| 3.3.229.1, 9.9.78544420275841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{2}$ | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | ${\href{/padicField/19.9.0.1}{9} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.2.2.4a2.1 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 13.4.3.8a1.3 | $x^{12} + 9 x^{10} + 36 x^{9} + 33 x^{8} + 216 x^{7} + 495 x^{6} + 468 x^{5} + 1362 x^{4} + 2160 x^{3} + 900 x^{2} + 144 x + 21$ | $3$ | $4$ | $8$ | $C_{12}$ | $$[\ ]_{3}^{4}$$ | |
|
\(229\)
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{229}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ |