Normalized defining polynomial
\( x^{18} - 103 x^{16} + 4170 x^{14} - 88068 x^{12} + 1065425 x^{10} - 7547378 x^{8} + 30446048 x^{6} + \cdots - 16974593 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(2396895706841866493030330389189885952\)
\(\medspace = 2^{18}\cdot 257^{9}\cdot 43237^{2}\)
|
| |
| Root discriminant: | \(104.98\) |
| |
| Galois root discriminant: | $2^{63/32}257^{1/2}43237^{1/2}\approx 13048.095961157862$ | ||
| Ramified primes: |
\(2\), \(257\), \(43237\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{257}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{257}a^{14}-\frac{103}{257}a^{12}+\frac{58}{257}a^{10}+\frac{83}{257}a^{8}-\frac{97}{257}a^{6}-\frac{59}{257}a^{4}+\frac{29}{257}a^{2}$, $\frac{1}{257}a^{15}-\frac{103}{257}a^{13}+\frac{58}{257}a^{11}+\frac{83}{257}a^{9}-\frac{97}{257}a^{7}-\frac{59}{257}a^{5}+\frac{29}{257}a^{3}$, $\frac{1}{63\cdots 89}a^{16}-\frac{95\cdots 31}{63\cdots 89}a^{14}-\frac{14\cdots 46}{63\cdots 89}a^{12}-\frac{23\cdots 34}{63\cdots 89}a^{10}+\frac{14\cdots 89}{63\cdots 89}a^{8}+\frac{26\cdots 80}{63\cdots 89}a^{6}-\frac{60\cdots 32}{63\cdots 89}a^{4}+\frac{42\cdots 52}{24\cdots 77}a^{2}+\frac{31\cdots 89}{96\cdots 61}$, $\frac{1}{63\cdots 89}a^{17}-\frac{95\cdots 31}{63\cdots 89}a^{15}-\frac{14\cdots 46}{63\cdots 89}a^{13}-\frac{23\cdots 34}{63\cdots 89}a^{11}+\frac{14\cdots 89}{63\cdots 89}a^{9}+\frac{26\cdots 80}{63\cdots 89}a^{7}-\frac{60\cdots 32}{63\cdots 89}a^{5}+\frac{42\cdots 52}{24\cdots 77}a^{3}+\frac{31\cdots 89}{96\cdots 61}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $32$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{20508331589240}{24\cdots 77}a^{16}-\frac{19\cdots 50}{24\cdots 77}a^{14}+\frac{66\cdots 91}{24\cdots 77}a^{12}-\frac{11\cdots 51}{24\cdots 77}a^{10}+\frac{11\cdots 90}{24\cdots 77}a^{8}-\frac{57\cdots 47}{24\cdots 77}a^{6}+\frac{57\cdots 10}{96\cdots 61}a^{4}-\frac{14\cdots 81}{24\cdots 77}a^{2}+\frac{17\cdots 51}{96\cdots 61}$, $\frac{37\cdots 56}{63\cdots 89}a^{16}-\frac{36\cdots 29}{63\cdots 89}a^{14}+\frac{13\cdots 11}{63\cdots 89}a^{12}-\frac{25\cdots 08}{63\cdots 89}a^{10}+\frac{25\cdots 81}{63\cdots 89}a^{8}-\frac{14\cdots 42}{63\cdots 89}a^{6}+\frac{42\cdots 57}{63\cdots 89}a^{4}-\frac{22\cdots 05}{24\cdots 77}a^{2}+\frac{41\cdots 59}{96\cdots 61}$, $\frac{31\cdots 93}{63\cdots 89}a^{16}-\frac{25\cdots 12}{63\cdots 89}a^{14}+\frac{67\cdots 55}{63\cdots 89}a^{12}-\frac{78\cdots 02}{63\cdots 89}a^{10}+\frac{35\cdots 53}{63\cdots 89}a^{8}-\frac{13\cdots 98}{63\cdots 89}a^{6}-\frac{28\cdots 62}{63\cdots 89}a^{4}+\frac{18\cdots 60}{24\cdots 77}a^{2}-\frac{37\cdots 21}{96\cdots 61}$, $\frac{12\cdots 84}{63\cdots 89}a^{16}-\frac{11\cdots 70}{63\cdots 89}a^{14}+\frac{41\cdots 42}{63\cdots 89}a^{12}-\frac{75\cdots 53}{63\cdots 89}a^{10}+\frac{73\cdots 87}{63\cdots 89}a^{8}-\frac{37\cdots 11}{63\cdots 89}a^{6}+\frac{90\cdots 79}{63\cdots 89}a^{4}-\frac{29\cdots 75}{24\cdots 77}a^{2}+\frac{26\cdots 04}{96\cdots 61}$, $\frac{33605876764195}{24\cdots 77}a^{16}-\frac{30\cdots 38}{24\cdots 77}a^{14}+\frac{10\cdots 83}{24\cdots 77}a^{12}-\frac{16\cdots 87}{24\cdots 77}a^{10}+\frac{15\cdots 67}{24\cdots 77}a^{8}-\frac{75\cdots 87}{24\cdots 77}a^{6}+\frac{73\cdots 36}{96\cdots 61}a^{4}-\frac{20\cdots 64}{24\cdots 77}a^{2}+\frac{32\cdots 40}{96\cdots 61}$, $\frac{126636787985}{96\cdots 61}a^{16}-\frac{12865335851708}{96\cdots 61}a^{14}+\frac{501208244441343}{96\cdots 61}a^{12}-\frac{97\cdots 83}{96\cdots 61}a^{10}+\frac{10\cdots 37}{96\cdots 61}a^{8}-\frac{55\cdots 29}{96\cdots 61}a^{6}+\frac{14\cdots 86}{96\cdots 61}a^{4}-\frac{15\cdots 49}{96\cdots 61}a^{2}+\frac{56\cdots 73}{96\cdots 61}$, $\frac{11\cdots 00}{63\cdots 89}a^{16}-\frac{10\cdots 59}{63\cdots 89}a^{14}+\frac{38\cdots 59}{63\cdots 89}a^{12}-\frac{67\cdots 79}{63\cdots 89}a^{10}+\frac{64\cdots 24}{63\cdots 89}a^{8}-\frac{33\cdots 85}{63\cdots 89}a^{6}+\frac{88\cdots 22}{63\cdots 89}a^{4}-\frac{39\cdots 39}{24\cdots 77}a^{2}+\frac{55\cdots 52}{96\cdots 61}$, $\frac{65\cdots 20}{63\cdots 89}a^{16}-\frac{60\cdots 09}{63\cdots 89}a^{14}+\frac{21\cdots 72}{63\cdots 89}a^{12}-\frac{37\cdots 72}{63\cdots 89}a^{10}+\frac{35\cdots 94}{63\cdots 89}a^{8}-\frac{18\cdots 06}{63\cdots 89}a^{6}+\frac{50\cdots 32}{63\cdots 89}a^{4}-\frac{24\cdots 58}{24\cdots 77}a^{2}+\frac{37\cdots 40}{96\cdots 61}$, $\frac{17\cdots 06}{63\cdots 89}a^{16}-\frac{16\cdots 24}{63\cdots 89}a^{14}+\frac{61\cdots 18}{63\cdots 89}a^{12}-\frac{11\cdots 10}{63\cdots 89}a^{10}+\frac{10\cdots 53}{63\cdots 89}a^{8}-\frac{56\cdots 72}{63\cdots 89}a^{6}+\frac{14\cdots 05}{63\cdots 89}a^{4}-\frac{52\cdots 99}{24\cdots 77}a^{2}+a+\frac{61\cdots 04}{96\cdots 61}$, $\frac{68\cdots 29}{63\cdots 89}a^{17}-\frac{28\cdots 96}{63\cdots 89}a^{16}-\frac{62\cdots 07}{63\cdots 89}a^{15}+\frac{24\cdots 67}{63\cdots 89}a^{14}+\frac{21\cdots 17}{63\cdots 89}a^{13}-\frac{72\cdots 13}{63\cdots 89}a^{12}-\frac{35\cdots 92}{63\cdots 89}a^{11}+\frac{10\cdots 01}{63\cdots 89}a^{10}+\frac{31\cdots 60}{63\cdots 89}a^{9}-\frac{84\cdots 34}{63\cdots 89}a^{8}-\frac{14\cdots 01}{63\cdots 89}a^{7}+\frac{40\cdots 57}{63\cdots 89}a^{6}+\frac{28\cdots 64}{63\cdots 89}a^{5}-\frac{12\cdots 29}{63\cdots 89}a^{4}-\frac{49\cdots 91}{24\cdots 77}a^{3}+\frac{93\cdots 20}{24\cdots 77}a^{2}-\frac{65\cdots 77}{96\cdots 61}a-\frac{21\cdots 78}{96\cdots 61}$, $\frac{30\cdots 08}{63\cdots 89}a^{17}-\frac{41\cdots 11}{63\cdots 89}a^{16}-\frac{30\cdots 53}{63\cdots 89}a^{15}+\frac{41\cdots 58}{63\cdots 89}a^{14}+\frac{11\cdots 23}{63\cdots 89}a^{13}-\frac{15\cdots 53}{63\cdots 89}a^{12}-\frac{23\cdots 68}{63\cdots 89}a^{11}+\frac{29\cdots 02}{63\cdots 89}a^{10}+\frac{25\cdots 97}{63\cdots 89}a^{9}-\frac{31\cdots 40}{63\cdots 89}a^{8}-\frac{15\cdots 92}{63\cdots 89}a^{7}+\frac{18\cdots 83}{63\cdots 89}a^{6}+\frac{52\cdots 39}{63\cdots 89}a^{5}-\frac{56\cdots 32}{63\cdots 89}a^{4}-\frac{32\cdots 00}{24\cdots 77}a^{3}+\frac{31\cdots 54}{24\cdots 77}a^{2}+\frac{65\cdots 78}{96\cdots 61}a-\frac{58\cdots 59}{96\cdots 61}$, $\frac{47\cdots 44}{63\cdots 89}a^{17}-\frac{15\cdots 71}{63\cdots 89}a^{16}-\frac{46\cdots 34}{63\cdots 89}a^{15}+\frac{14\cdots 85}{63\cdots 89}a^{14}+\frac{16\cdots 26}{63\cdots 89}a^{13}-\frac{52\cdots 66}{63\cdots 89}a^{12}-\frac{31\cdots 05}{63\cdots 89}a^{11}+\frac{94\cdots 53}{63\cdots 89}a^{10}+\frac{30\cdots 45}{63\cdots 89}a^{9}-\frac{91\cdots 23}{63\cdots 89}a^{8}-\frac{15\cdots 87}{63\cdots 89}a^{7}+\frac{47\cdots 17}{63\cdots 89}a^{6}+\frac{38\cdots 32}{63\cdots 89}a^{5}-\frac{11\cdots 03}{63\cdots 89}a^{4}-\frac{13\cdots 33}{24\cdots 77}a^{3}+\frac{44\cdots 69}{24\cdots 77}a^{2}+\frac{14\cdots 65}{96\cdots 61}a-\frac{53\cdots 76}{96\cdots 61}$, $\frac{106643983777602}{24\cdots 77}a^{17}-\frac{32\cdots 39}{63\cdots 89}a^{16}-\frac{96\cdots 13}{24\cdots 77}a^{15}+\frac{26\cdots 00}{63\cdots 89}a^{14}+\frac{32\cdots 17}{24\cdots 77}a^{13}-\frac{78\cdots 64}{63\cdots 89}a^{12}-\frac{55\cdots 42}{24\cdots 77}a^{11}+\frac{10\cdots 42}{63\cdots 89}a^{10}+\frac{49\cdots 90}{24\cdots 77}a^{9}-\frac{67\cdots 06}{63\cdots 89}a^{8}-\frac{23\cdots 88}{24\cdots 77}a^{7}+\frac{19\cdots 98}{63\cdots 89}a^{6}+\frac{21\cdots 52}{96\cdots 61}a^{5}-\frac{18\cdots 22}{63\cdots 89}a^{4}-\frac{49\cdots 66}{24\cdots 77}a^{3}-\frac{15\cdots 41}{24\cdots 77}a^{2}+\frac{56\cdots 39}{96\cdots 61}a+\frac{10\cdots 18}{96\cdots 61}$, $\frac{69\cdots 30}{63\cdots 89}a^{17}-\frac{16\cdots 17}{63\cdots 89}a^{16}-\frac{66\cdots 01}{63\cdots 89}a^{15}+\frac{15\cdots 69}{63\cdots 89}a^{14}+\frac{24\cdots 12}{63\cdots 89}a^{13}-\frac{58\cdots 32}{63\cdots 89}a^{12}-\frac{44\cdots 42}{63\cdots 89}a^{11}+\frac{10\cdots 48}{63\cdots 89}a^{10}+\frac{43\cdots 20}{63\cdots 89}a^{9}-\frac{10\cdots 05}{63\cdots 89}a^{8}-\frac{22\cdots 30}{63\cdots 89}a^{7}+\frac{56\cdots 77}{63\cdots 89}a^{6}+\frac{56\cdots 00}{63\cdots 89}a^{5}-\frac{14\cdots 40}{63\cdots 89}a^{4}-\frac{21\cdots 24}{24\cdots 77}a^{3}+\frac{55\cdots 05}{24\cdots 77}a^{2}+\frac{26\cdots 26}{96\cdots 61}a-\frac{67\cdots 06}{96\cdots 61}$, $\frac{18\cdots 20}{63\cdots 89}a^{17}-\frac{13\cdots 37}{63\cdots 89}a^{16}-\frac{17\cdots 33}{63\cdots 89}a^{15}+\frac{13\cdots 56}{63\cdots 89}a^{14}+\frac{62\cdots 55}{63\cdots 89}a^{13}-\frac{49\cdots 72}{63\cdots 89}a^{12}-\frac{11\cdots 42}{63\cdots 89}a^{11}+\frac{88\cdots 79}{63\cdots 89}a^{10}+\frac{11\cdots 88}{63\cdots 89}a^{9}-\frac{83\cdots 62}{63\cdots 89}a^{8}-\frac{61\cdots 66}{63\cdots 89}a^{7}+\frac{39\cdots 39}{63\cdots 89}a^{6}+\frac{17\cdots 67}{63\cdots 89}a^{5}-\frac{81\cdots 94}{63\cdots 89}a^{4}-\frac{81\cdots 00}{24\cdots 77}a^{3}+\frac{14\cdots 32}{24\cdots 77}a^{2}+\frac{12\cdots 34}{96\cdots 61}a+\frac{33\cdots 77}{96\cdots 61}$, $\frac{13\cdots 83}{63\cdots 89}a^{17}+\frac{19\cdots 03}{63\cdots 89}a^{16}-\frac{12\cdots 52}{63\cdots 89}a^{15}-\frac{18\cdots 53}{63\cdots 89}a^{14}+\frac{46\cdots 59}{63\cdots 89}a^{13}+\frac{64\cdots 26}{63\cdots 89}a^{12}-\frac{83\cdots 92}{63\cdots 89}a^{11}-\frac{11\cdots 88}{63\cdots 89}a^{10}+\frac{81\cdots 64}{63\cdots 89}a^{9}+\frac{10\cdots 12}{63\cdots 89}a^{8}-\frac{43\cdots 01}{63\cdots 89}a^{7}-\frac{55\cdots 74}{63\cdots 89}a^{6}+\frac{11\cdots 86}{63\cdots 89}a^{5}+\frac{14\cdots 98}{63\cdots 89}a^{4}-\frac{50\cdots 67}{24\cdots 77}a^{3}-\frac{63\cdots 41}{24\cdots 77}a^{2}+\frac{69\cdots 84}{96\cdots 61}a+\frac{88\cdots 58}{96\cdots 61}$, $\frac{23\cdots 34}{63\cdots 89}a^{17}+\frac{85\cdots 79}{63\cdots 89}a^{16}-\frac{20\cdots 86}{63\cdots 89}a^{15}-\frac{75\cdots 04}{63\cdots 89}a^{14}+\frac{68\cdots 28}{63\cdots 89}a^{13}+\frac{24\cdots 34}{63\cdots 89}a^{12}-\frac{11\cdots 01}{63\cdots 89}a^{11}-\frac{39\cdots 22}{63\cdots 89}a^{10}+\frac{96\cdots 67}{63\cdots 89}a^{9}+\frac{33\cdots 94}{63\cdots 89}a^{8}-\frac{45\cdots 59}{63\cdots 89}a^{7}-\frac{15\cdots 42}{63\cdots 89}a^{6}+\frac{10\cdots 92}{63\cdots 89}a^{5}+\frac{35\cdots 70}{63\cdots 89}a^{4}-\frac{39\cdots 72}{24\cdots 77}a^{3}-\frac{12\cdots 94}{24\cdots 77}a^{2}+\frac{53\cdots 32}{96\cdots 61}a+\frac{14\cdots 87}{96\cdots 61}$
|
| |
| Regulator: | \( 1174071788510 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 1174071788510 \cdot 2}{2\cdot\sqrt{2396895706841866493030330389189885952}}\cr\approx \mathstrut & 0.198797082181842 \end{aligned}\] (assuming GRH)
Galois group
$S_4^3.S_4$ (as 18T884):
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for $S_4^3.S_4$ |
| Character table for $S_4^3.S_4$ |
Intermediate fields
| 3.3.257.1, 9.9.733930477541.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.18.103634579676721781559152395037403098906624.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.1 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(257\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
|
\(43237\)
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |