Properties

Label 18T884
Order \(331776\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $884$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,17)(2,4,18)(5,12,7,13,6,11,8,14)(9,15)(10,16), (1,16,3,12)(2,15,4,11)(5,6)(7,9)(8,10)(13,17)(14,18), (1,18,3,2,17,4)(5,16)(6,15)(7,13)(8,14)(9,12)(10,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  12T100
1296:  $S_3\wr S_3$
5184:  18T483
82944:  12T294

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $S_3\wr S_3$

Low degree siblings

18T880 x 2, 18T883 x 2, 18T884, 18T885 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 165 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $331776=2^{12} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.