Normalized defining polynomial
\( x^{18} - 19674 x^{16} - 236892 x^{15} + 141285519 x^{14} + 2591050644 x^{13} - 483401755344 x^{12} + \cdots + 26\!\cdots\!00 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(22063911869341701750760207002328140551944852253885577375000000000000\)
\(\medspace = 2^{12}\cdot 3^{30}\cdot 5^{15}\cdot 11^{7}\cdot 2339^{4}\cdot 34819^{4}\)
|
| |
| Root discriminant: | \(5512.08\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(11\), \(2339\), \(34819\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{55}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6}a^{2}-\frac{1}{6}a-\frac{1}{3}$, $\frac{1}{12}a^{3}-\frac{1}{4}a-\frac{1}{6}$, $\frac{1}{72}a^{4}+\frac{1}{72}a^{3}-\frac{1}{24}a^{2}-\frac{5}{72}a-\frac{1}{36}$, $\frac{1}{72}a^{5}+\frac{1}{36}a^{3}-\frac{1}{36}a^{2}-\frac{5}{24}a-\frac{5}{36}$, $\frac{1}{432}a^{6}+\frac{1}{216}a^{3}-\frac{1}{48}a^{2}-\frac{1}{24}a-\frac{1}{54}$, $\frac{1}{864}a^{7}-\frac{1}{864}a^{6}-\frac{1}{144}a^{5}+\frac{1}{432}a^{4}+\frac{13}{864}a^{3}+\frac{1}{288}a^{2}-\frac{1}{108}a-\frac{1}{216}$, $\frac{1}{5184}a^{8}+\frac{1}{2592}a^{7}-\frac{5}{5184}a^{6}-\frac{1}{324}a^{5}-\frac{5}{5184}a^{4}+\frac{13}{2592}a^{3}+\frac{37}{5184}a^{2}+\frac{5}{1296}a+\frac{1}{1296}$, $\frac{1}{15552}a^{9}-\frac{1}{1728}a^{7}-\frac{1}{2592}a^{6}+\frac{1}{576}a^{5}+\frac{1}{432}a^{4}-\frac{5}{5184}a^{3}-\frac{1}{288}a^{2}-\frac{1}{432}a-\frac{1}{1944}$, $\frac{1}{31104}a^{10}-\frac{1}{31104}a^{9}-\frac{1}{10368}a^{8}+\frac{5}{10368}a^{7}+\frac{1}{10368}a^{6}-\frac{29}{10368}a^{5}-\frac{1}{384}a^{4}+\frac{13}{3456}a^{3}+\frac{5}{648}a^{2}+\frac{37}{7776}a+\frac{1}{972}$, $\frac{1}{933120}a^{11}+\frac{7}{466560}a^{10}-\frac{1}{116640}a^{9}-\frac{1}{38880}a^{8}-\frac{47}{155520}a^{7}-\frac{47}{77760}a^{6}+\frac{23}{15552}a^{5}+\frac{1}{972}a^{4}-\frac{2257}{62208}a^{3}-\frac{2897}{93312}a^{2}+\frac{15955}{46656}a+\frac{7873}{23328}$, $\frac{1}{1866240}a^{12}-\frac{1}{1866240}a^{11}+\frac{11}{933120}a^{10}+\frac{1}{51840}a^{9}-\frac{17}{311040}a^{8}+\frac{41}{311040}a^{7}+\frac{5}{31104}a^{6}+\frac{31}{7776}a^{5}+\frac{59}{124416}a^{4}-\frac{6505}{373248}a^{3}+\frac{3743}{186624}a^{2}+\frac{16229}{93312}a+\frac{2177}{15552}$, $\frac{1}{5598720}a^{13}+\frac{1}{5598720}a^{12}+\frac{1}{139968}a^{10}+\frac{13}{559872}a^{9}+\frac{1}{34560}a^{8}+\frac{11}{29160}a^{7}-\frac{11}{23328}a^{6}-\frac{47}{13824}a^{5}-\frac{4735}{1119744}a^{4}-\frac{1871}{139968}a^{3}-\frac{5}{288}a^{2}-\frac{20989}{69984}a-\frac{20593}{69984}$, $\frac{1}{22394880}a^{14}-\frac{1}{11197440}a^{13}-\frac{1}{7464960}a^{12}-\frac{1}{2799360}a^{11}+\frac{29}{11197440}a^{10}+\frac{43}{1866240}a^{9}-\frac{77}{3732480}a^{8}-\frac{79}{186624}a^{7}-\frac{809}{829440}a^{6}+\frac{10651}{2239488}a^{5}-\frac{17971}{4478976}a^{4}+\frac{575}{46656}a^{3}+\frac{8743}{559872}a^{2}-\frac{48821}{139968}a+\frac{14675}{93312}$, $\frac{1}{54\cdots 00}a^{15}+\frac{1}{74649600}a^{14}-\frac{1058747891}{18\cdots 00}a^{13}+\frac{13274750591}{54\cdots 00}a^{12}-\frac{1173054599}{30\cdots 00}a^{11}+\frac{52310167091}{91\cdots 00}a^{10}+\frac{90550399027}{54\cdots 40}a^{9}-\frac{1993025683}{40530572826624}a^{8}+\frac{45701254229}{243183436959744}a^{7}+\frac{2946268480097}{10\cdots 80}a^{6}-\frac{2598288473081}{12\cdots 20}a^{5}+\frac{22867288994813}{36\cdots 60}a^{4}+\frac{517435454839}{273581366579712}a^{3}-\frac{17875}{373248}a^{2}-\frac{85459}{559872}a+\frac{482279}{1679616}$, $\frac{1}{54\cdots 00}a^{16}-\frac{1093}{30\cdots 00}a^{14}-\frac{101816857}{34\cdots 00}a^{13}-\frac{1581737647}{18\cdots 00}a^{12}+\frac{26621213}{84438693388800}a^{11}-\frac{117999981401}{13\cdots 00}a^{10}-\frac{3248667247}{113992236074880}a^{9}-\frac{12168276223}{405305728266240}a^{8}-\frac{8918431769}{136790683289856}a^{7}-\frac{44332152833}{607958592399360}a^{6}+\frac{3043300957}{15198964809984}a^{5}-\frac{21687336473711}{10\cdots 80}a^{4}+\frac{27311}{1119744}a^{3}-\frac{9571}{124416}a^{2}-\frac{386999}{839808}a+\frac{192751}{559872}$, $\frac{1}{66\cdots 00}a^{17}-\frac{18\cdots 43}{33\cdots 00}a^{16}+\frac{92\cdots 41}{33\cdots 00}a^{15}-\frac{17\cdots 53}{83\cdots 00}a^{14}-\frac{14\cdots 77}{66\cdots 00}a^{13}-\frac{31\cdots 07}{33\cdots 00}a^{12}+\frac{66\cdots 41}{33\cdots 00}a^{11}+\frac{12\cdots 37}{83\cdots 00}a^{10}+\frac{23\cdots 99}{13\cdots 00}a^{9}-\frac{47\cdots 93}{66\cdots 00}a^{8}+\frac{17\cdots 61}{66\cdots 00}a^{7}-\frac{14\cdots 59}{16\cdots 00}a^{6}+\frac{20\cdots 09}{26\cdots 20}a^{5}+\frac{25\cdots 63}{13\cdots 60}a^{4}+\frac{64\cdots 25}{66\cdots 88}a^{3}-\frac{46\cdots 89}{20\cdots 20}a^{2}+\frac{90\cdots 45}{40\cdots 84}a+\frac{49\cdots 63}{10\cdots 60}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{22063911869341701750760207002328140551944852253885577375000000000000}}\cr\mathstrut & \text{
Galois group
$C_3^4:(C_6^2:C_4)$ (as 18T576):
| A solvable group of order 11664 |
| The 49 conjugacy class representatives for $C_3^4:(C_6^2:C_4)$ |
| Character table for $C_3^4:(C_6^2:C_4)$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 6.6.55130625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | R | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.6.0.1}{6} }$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 2.2.2.4a2.2 | $x^{4} + 4 x^{3} + 5 x^{2} + 4 x + 7$ | $2$ | $2$ | $4$ | $D_{4}$ | $$[2, 2]^{2}$$ | |
| 2.4.2.8a3.1 | $x^{8} + 2 x^{6} + 4 x^{5} + 2 x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 3$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $$[2, 2]^{4}$$ | |
|
\(3\)
| 3.2.9.30b15.13 | $x^{18} + 21 x^{17} + 213 x^{16} + 1398 x^{15} + 6663 x^{14} + 24486 x^{13} + 71862 x^{12} + 172104 x^{11} + 340788 x^{10} + 561899 x^{9} + 773187 x^{8} + 885918 x^{7} + 839364 x^{6} + 649236 x^{5} + 401496 x^{4} + 191928 x^{3} + 66960 x^{2} + 15264 x + 1715$ | $9$ | $2$ | $30$ | 18T49 | not computed |
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
| 5.1.12.11a1.4 | $x^{12} + 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $$[\ ]_{12}^{2}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.1.3.2a1.1 | $x^{3} + 11$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 11.1.6.5a1.2 | $x^{6} + 22$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ | |
|
\(2339\)
| $\Q_{2339}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $3$ | $3$ | $1$ | $2$ | ||||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
|
\(34819\)
| $\Q_{34819}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $3$ | $2$ | $4$ |