Normalized defining polynomial
\( x^{18} - 105 x^{16} + 4536 x^{14} - 105014 x^{12} + 1420839 x^{10} - 11417007 x^{8} + 52263162 x^{6} + \cdots - 6964321 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(2007609002750174051598743153244635136\)
\(\medspace = 2^{18}\cdot 3^{18}\cdot 7^{16}\cdot 29^{6}\)
|
| |
| Root discriminant: | \(103.95\) |
| |
| Galois root discriminant: | $2^{63/32}3^{25/18}7^{11/12}29^{5/6}\approx 1772.7986604582713$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7}a^{12}$, $\frac{1}{7}a^{13}$, $\frac{1}{7}a^{14}$, $\frac{1}{7}a^{15}$, $\frac{1}{18\cdots 91}a^{16}+\frac{67\cdots 79}{18\cdots 91}a^{14}+\frac{14\cdots 80}{18\cdots 91}a^{12}-\frac{41\cdots 59}{26\cdots 13}a^{10}+\frac{83\cdots 41}{26\cdots 13}a^{8}-\frac{96\cdots 64}{26\cdots 13}a^{6}-\frac{45\cdots 26}{90\cdots 97}a^{4}+\frac{54\cdots 76}{90\cdots 97}a^{2}+\frac{11\cdots 56}{90\cdots 97}$, $\frac{1}{23\cdots 83}a^{17}+\frac{13\cdots 44}{23\cdots 83}a^{15}+\frac{10\cdots 32}{23\cdots 83}a^{13}-\frac{31\cdots 43}{26\cdots 13}a^{11}+\frac{16\cdots 19}{34\cdots 69}a^{9}-\frac{16\cdots 42}{34\cdots 69}a^{7}-\frac{49\cdots 11}{11\cdots 61}a^{5}+\frac{21\cdots 59}{90\cdots 97}a^{3}+\frac{11\cdots 56}{11\cdots 61}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $32$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{26\cdots 08}{42\cdots 27}a^{16}+\frac{25\cdots 70}{42\cdots 27}a^{14}-\frac{13\cdots 09}{60\cdots 61}a^{12}+\frac{25\cdots 47}{60\cdots 61}a^{10}-\frac{26\cdots 17}{60\cdots 61}a^{8}+\frac{15\cdots 35}{60\cdots 61}a^{6}-\frac{14\cdots 61}{20\cdots 09}a^{4}+\frac{11\cdots 78}{20\cdots 09}a^{2}-\frac{41\cdots 95}{20\cdots 09}$, $\frac{26\cdots 08}{42\cdots 27}a^{16}-\frac{25\cdots 70}{42\cdots 27}a^{14}+\frac{13\cdots 09}{60\cdots 61}a^{12}-\frac{25\cdots 47}{60\cdots 61}a^{10}+\frac{26\cdots 17}{60\cdots 61}a^{8}-\frac{15\cdots 35}{60\cdots 61}a^{6}+\frac{14\cdots 61}{20\cdots 09}a^{4}-\frac{11\cdots 78}{20\cdots 09}a^{2}+\frac{62\cdots 04}{20\cdots 09}$, $\frac{82\cdots 98}{18\cdots 91}a^{16}-\frac{74\cdots 12}{18\cdots 91}a^{14}+\frac{26\cdots 43}{18\cdots 91}a^{12}-\frac{66\cdots 96}{26\cdots 13}a^{10}+\frac{63\cdots 93}{26\cdots 13}a^{8}-\frac{32\cdots 45}{26\cdots 13}a^{6}+\frac{27\cdots 03}{90\cdots 97}a^{4}-\frac{26\cdots 71}{90\cdots 97}a^{2}+\frac{65\cdots 27}{90\cdots 97}$, $\frac{22\cdots 27}{63\cdots 79}a^{16}-\frac{20\cdots 06}{63\cdots 79}a^{14}+\frac{76\cdots 33}{63\cdots 79}a^{12}-\frac{20\cdots 90}{90\cdots 97}a^{10}+\frac{20\cdots 89}{90\cdots 97}a^{8}-\frac{11\cdots 09}{90\cdots 97}a^{6}+\frac{29\cdots 41}{90\cdots 97}a^{4}-\frac{24\cdots 24}{90\cdots 97}a^{2}+\frac{20\cdots 61}{90\cdots 97}$, $\frac{14\cdots 60}{18\cdots 91}a^{16}+\frac{13\cdots 29}{18\cdots 91}a^{14}-\frac{54\cdots 68}{18\cdots 91}a^{12}+\frac{15\cdots 60}{26\cdots 13}a^{10}-\frac{17\cdots 53}{26\cdots 13}a^{8}+\frac{10\cdots 00}{26\cdots 13}a^{6}-\frac{10\cdots 28}{90\cdots 97}a^{4}+\frac{97\cdots 55}{90\cdots 97}a^{2}-\frac{73\cdots 08}{90\cdots 97}$, $\frac{32\cdots 93}{26\cdots 13}a^{16}+\frac{22\cdots 65}{18\cdots 91}a^{14}-\frac{91\cdots 57}{18\cdots 91}a^{12}+\frac{26\cdots 68}{26\cdots 13}a^{10}-\frac{30\cdots 07}{26\cdots 13}a^{8}+\frac{18\cdots 01}{26\cdots 13}a^{6}-\frac{18\cdots 24}{90\cdots 97}a^{4}+\frac{16\cdots 29}{90\cdots 97}a^{2}-\frac{12\cdots 70}{90\cdots 97}$, $\frac{51\cdots 09}{26\cdots 13}a^{16}-\frac{48\cdots 68}{26\cdots 13}a^{14}+\frac{18\cdots 15}{26\cdots 13}a^{12}-\frac{35\cdots 33}{26\cdots 13}a^{10}+\frac{37\cdots 81}{26\cdots 13}a^{8}-\frac{21\cdots 98}{26\cdots 13}a^{6}+\frac{19\cdots 75}{90\cdots 97}a^{4}-\frac{16\cdots 86}{90\cdots 97}a^{2}+\frac{12\cdots 14}{90\cdots 97}$, $\frac{27\cdots 52}{26\cdots 13}a^{16}-\frac{17\cdots 78}{18\cdots 91}a^{14}+\frac{60\cdots 35}{18\cdots 91}a^{12}-\frac{15\cdots 96}{26\cdots 13}a^{10}+\frac{14\cdots 01}{26\cdots 13}a^{8}-\frac{76\cdots 67}{26\cdots 13}a^{6}+\frac{67\cdots 16}{90\cdots 97}a^{4}-\frac{63\cdots 99}{90\cdots 97}a^{2}+\frac{50\cdots 39}{90\cdots 97}$, $\frac{89\cdots 42}{23\cdots 83}a^{17}+\frac{39\cdots 02}{26\cdots 13}a^{16}-\frac{12\cdots 28}{34\cdots 69}a^{15}-\frac{24\cdots 19}{18\cdots 91}a^{14}+\frac{31\cdots 25}{23\cdots 83}a^{13}+\frac{84\cdots 78}{18\cdots 91}a^{12}-\frac{67\cdots 35}{26\cdots 13}a^{11}-\frac{20\cdots 87}{26\cdots 13}a^{10}+\frac{95\cdots 76}{34\cdots 69}a^{9}+\frac{18\cdots 68}{26\cdots 13}a^{8}-\frac{57\cdots 68}{34\cdots 69}a^{7}-\frac{79\cdots 97}{26\cdots 13}a^{6}+\frac{63\cdots 40}{11\cdots 61}a^{5}+\frac{37\cdots 04}{90\cdots 97}a^{4}-\frac{70\cdots 53}{90\cdots 97}a^{3}+\frac{61\cdots 88}{90\cdots 97}a^{2}+\frac{47\cdots 67}{11\cdots 61}a-\frac{92\cdots 11}{90\cdots 97}$, $\frac{88\cdots 78}{23\cdots 83}a^{17}-\frac{14\cdots 95}{18\cdots 91}a^{16}-\frac{83\cdots 68}{23\cdots 83}a^{15}+\frac{13\cdots 54}{18\cdots 91}a^{14}+\frac{31\cdots 58}{23\cdots 83}a^{13}-\frac{48\cdots 97}{18\cdots 91}a^{12}-\frac{66\cdots 55}{26\cdots 13}a^{11}+\frac{12\cdots 26}{26\cdots 13}a^{10}+\frac{91\cdots 63}{34\cdots 69}a^{9}-\frac{12\cdots 20}{26\cdots 13}a^{8}-\frac{53\cdots 33}{34\cdots 69}a^{7}+\frac{66\cdots 95}{26\cdots 13}a^{6}+\frac{55\cdots 93}{11\cdots 61}a^{5}-\frac{56\cdots 41}{90\cdots 97}a^{4}-\frac{51\cdots 06}{90\cdots 97}a^{3}+\frac{40\cdots 26}{90\cdots 97}a^{2}+\frac{18\cdots 68}{11\cdots 61}a-\frac{59\cdots 05}{90\cdots 97}$, $\frac{29\cdots 19}{23\cdots 83}a^{17}+\frac{10\cdots 31}{26\cdots 13}a^{16}-\frac{27\cdots 05}{23\cdots 83}a^{15}-\frac{88\cdots 94}{18\cdots 91}a^{14}+\frac{10\cdots 66}{23\cdots 83}a^{13}+\frac{41\cdots 81}{18\cdots 91}a^{12}-\frac{20\cdots 65}{26\cdots 13}a^{11}-\frac{14\cdots 70}{26\cdots 13}a^{10}+\frac{26\cdots 14}{34\cdots 69}a^{9}+\frac{17\cdots 09}{26\cdots 13}a^{8}-\frac{14\cdots 37}{34\cdots 69}a^{7}-\frac{11\cdots 70}{26\cdots 13}a^{6}+\frac{13\cdots 99}{11\cdots 61}a^{5}+\frac{98\cdots 81}{90\cdots 97}a^{4}-\frac{86\cdots 32}{90\cdots 97}a^{3}-\frac{23\cdots 51}{90\cdots 97}a^{2}+\frac{63\cdots 49}{11\cdots 61}a+\frac{56\cdots 47}{90\cdots 97}$, $\frac{14\cdots 00}{23\cdots 83}a^{17}-\frac{32\cdots 32}{18\cdots 91}a^{16}-\frac{21\cdots 76}{34\cdots 69}a^{15}+\frac{31\cdots 98}{18\cdots 91}a^{14}+\frac{87\cdots 89}{34\cdots 69}a^{13}-\frac{16\cdots 32}{26\cdots 13}a^{12}-\frac{13\cdots 48}{26\cdots 13}a^{11}+\frac{33\cdots 97}{26\cdots 13}a^{10}+\frac{19\cdots 23}{34\cdots 69}a^{9}-\frac{36\cdots 14}{26\cdots 13}a^{8}-\frac{10\cdots 53}{34\cdots 69}a^{7}+\frac{21\cdots 69}{26\cdots 13}a^{6}+\frac{70\cdots 03}{11\cdots 61}a^{5}-\frac{20\cdots 02}{90\cdots 97}a^{4}+\frac{60\cdots 18}{90\cdots 97}a^{3}+\frac{17\cdots 65}{90\cdots 97}a^{2}-\frac{12\cdots 18}{11\cdots 61}a-\frac{13\cdots 50}{90\cdots 97}$, $\frac{29\cdots 45}{23\cdots 83}a^{17}+\frac{19\cdots 62}{18\cdots 91}a^{16}+\frac{27\cdots 90}{23\cdots 83}a^{15}-\frac{17\cdots 07}{18\cdots 91}a^{14}-\frac{10\cdots 21}{23\cdots 83}a^{13}+\frac{61\cdots 09}{18\cdots 91}a^{12}+\frac{21\cdots 20}{26\cdots 13}a^{11}-\frac{14\cdots 53}{26\cdots 13}a^{10}-\frac{29\cdots 42}{34\cdots 69}a^{9}+\frac{13\cdots 86}{26\cdots 13}a^{8}+\frac{17\cdots 30}{34\cdots 69}a^{7}-\frac{59\cdots 69}{26\cdots 13}a^{6}-\frac{19\cdots 70}{11\cdots 61}a^{5}+\frac{34\cdots 60}{90\cdots 97}a^{4}+\frac{23\cdots 19}{90\cdots 97}a^{3}+\frac{79\cdots 03}{90\cdots 97}a^{2}-\frac{17\cdots 77}{11\cdots 61}a-\frac{34\cdots 49}{90\cdots 97}$, $\frac{22\cdots 20}{23\cdots 83}a^{17}+\frac{14\cdots 91}{18\cdots 91}a^{16}-\frac{20\cdots 42}{23\cdots 83}a^{15}-\frac{13\cdots 97}{18\cdots 91}a^{14}+\frac{74\cdots 18}{23\cdots 83}a^{13}+\frac{50\cdots 13}{18\cdots 91}a^{12}-\frac{14\cdots 30}{26\cdots 13}a^{11}-\frac{13\cdots 51}{26\cdots 13}a^{10}+\frac{18\cdots 93}{34\cdots 69}a^{9}+\frac{14\cdots 96}{26\cdots 13}a^{8}-\frac{96\cdots 31}{34\cdots 69}a^{7}-\frac{81\cdots 96}{26\cdots 13}a^{6}+\frac{77\cdots 71}{11\cdots 61}a^{5}+\frac{75\cdots 19}{90\cdots 97}a^{4}-\frac{33\cdots 50}{90\cdots 97}a^{3}-\frac{62\cdots 76}{90\cdots 97}a^{2}-\frac{16\cdots 88}{11\cdots 61}a+\frac{43\cdots 30}{90\cdots 97}$, $\frac{49\cdots 09}{23\cdots 83}a^{17}+\frac{10\cdots 42}{18\cdots 91}a^{16}-\frac{47\cdots 71}{23\cdots 83}a^{15}-\frac{96\cdots 09}{18\cdots 91}a^{14}+\frac{17\cdots 90}{23\cdots 83}a^{13}+\frac{36\cdots 66}{18\cdots 91}a^{12}-\frac{37\cdots 50}{26\cdots 13}a^{11}-\frac{99\cdots 34}{26\cdots 13}a^{10}+\frac{51\cdots 74}{34\cdots 69}a^{9}+\frac{10\cdots 61}{26\cdots 13}a^{8}-\frac{28\cdots 37}{34\cdots 69}a^{7}-\frac{59\cdots 25}{26\cdots 13}a^{6}+\frac{25\cdots 59}{11\cdots 61}a^{5}+\frac{55\cdots 59}{90\cdots 97}a^{4}-\frac{13\cdots 63}{90\cdots 97}a^{3}-\frac{48\cdots 31}{90\cdots 97}a^{2}+\frac{60\cdots 07}{11\cdots 61}a+\frac{37\cdots 64}{90\cdots 97}$, $\frac{30\cdots 07}{18\cdots 91}a^{17}-\frac{68\cdots 98}{18\cdots 91}a^{16}+\frac{39\cdots 18}{26\cdots 13}a^{15}+\frac{66\cdots 26}{18\cdots 91}a^{14}-\frac{14\cdots 00}{26\cdots 13}a^{13}-\frac{25\cdots 19}{18\cdots 91}a^{12}+\frac{26\cdots 78}{26\cdots 13}a^{11}+\frac{73\cdots 87}{26\cdots 13}a^{10}-\frac{26\cdots 15}{26\cdots 13}a^{9}-\frac{79\cdots 64}{26\cdots 13}a^{8}+\frac{13\cdots 12}{26\cdots 13}a^{7}+\frac{46\cdots 63}{26\cdots 13}a^{6}-\frac{11\cdots 26}{90\cdots 97}a^{5}-\frac{44\cdots 54}{90\cdots 97}a^{4}+\frac{84\cdots 70}{90\cdots 97}a^{3}+\frac{38\cdots 78}{90\cdots 97}a^{2}-\frac{66\cdots 39}{90\cdots 97}a-\frac{28\cdots 83}{90\cdots 97}$, $\frac{50\cdots 44}{23\cdots 83}a^{17}+\frac{80\cdots 80}{18\cdots 91}a^{16}+\frac{68\cdots 02}{34\cdots 69}a^{15}-\frac{77\cdots 73}{18\cdots 91}a^{14}-\frac{17\cdots 47}{23\cdots 83}a^{13}+\frac{29\cdots 76}{18\cdots 91}a^{12}+\frac{38\cdots 89}{26\cdots 13}a^{11}-\frac{81\cdots 48}{26\cdots 13}a^{10}-\frac{52\cdots 68}{34\cdots 69}a^{9}+\frac{86\cdots 87}{26\cdots 13}a^{8}+\frac{29\cdots 89}{34\cdots 69}a^{7}-\frac{49\cdots 52}{26\cdots 13}a^{6}-\frac{27\cdots 49}{11\cdots 61}a^{5}+\frac{46\cdots 24}{90\cdots 97}a^{4}+\frac{18\cdots 40}{90\cdots 97}a^{3}-\frac{40\cdots 95}{90\cdots 97}a^{2}-\frac{17\cdots 65}{11\cdots 61}a+\frac{34\cdots 73}{90\cdots 97}$
|
| |
| Regulator: | \( 2820691242954.3164 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 2820691242954.3164 \cdot 1}{2\cdot\sqrt{2007609002750174051598743153244635136}}\cr\approx \mathstrut & 0.260931138540750 \end{aligned}\] (assuming GRH)
Galois group
$A_4^3:(C_2\times A_4)$ (as 18T701):
| A solvable group of order 41472 |
| The 72 conjugacy class representatives for $A_4^3:(C_2\times A_4)$ |
| Character table for $A_4^3:(C_2\times A_4)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{7}$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.9.0.1}{9} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.12.0.1}{12} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.1 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(3\)
| 3.3.3.9a8.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 15 x^{5} + 12 x^{4} + 20 x^{3} + 15 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ |
| 3.3.3.9a8.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 15 x^{5} + 12 x^{4} + 20 x^{3} + 15 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
|
\(7\)
| 7.1.6.5a1.6 | $x^{6} + 42$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.1.12.11a1.1 | $x^{12} + 7$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $$[\ ]_{12}^{2}$$ | |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 29.1.6.5a1.1 | $x^{6} + 29$ | $6$ | $1$ | $5$ | $D_{6}$ | $$[\ ]_{6}^{2}$$ |