Normalized defining polynomial
\( x^{18} - 20x^{16} + 153x^{14} - 573x^{12} + 1136x^{10} - 1219x^{8} + 707x^{6} - 211x^{4} + 28x^{2} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[18, 0]$ |
| |
| Discriminant: |
\(141204899984457152700528984064\)
\(\medspace = 2^{18}\cdot 257^{6}\cdot 43237^{2}\)
|
| |
| Root discriminant: | \(41.63\) |
| |
| Galois root discriminant: | $2^{63/32}257^{1/2}43237^{1/2}\approx 13048.095961157862$ | ||
| Ramified primes: |
\(2\), \(257\), \(43237\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{227}a^{16}-\frac{90}{227}a^{14}+\frac{97}{227}a^{12}-\frac{99}{227}a^{10}-\frac{106}{227}a^{8}+\frac{72}{227}a^{6}-\frac{20}{227}a^{4}+\frac{54}{227}a^{2}+\frac{107}{227}$, $\frac{1}{227}a^{17}-\frac{90}{227}a^{15}+\frac{97}{227}a^{13}-\frac{99}{227}a^{11}-\frac{106}{227}a^{9}+\frac{72}{227}a^{7}-\frac{20}{227}a^{5}+\frac{54}{227}a^{3}+\frac{107}{227}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $\frac{1545}{227}a^{17}-\frac{30090}{227}a^{15}+\frac{220689}{227}a^{13}-\frac{771076}{227}a^{11}+\frac{1361216}{227}a^{9}-\frac{1202636}{227}a^{7}+\frac{511176}{227}a^{5}-\frac{90452}{227}a^{3}+\frac{4372}{227}a$, $\frac{1186}{227}a^{17}-\frac{23204}{227}a^{15}+\frac{171338}{227}a^{13}-\frac{604556}{227}a^{11}+\frac{1080789}{227}a^{9}-\frac{963575}{227}a^{7}+\frac{399181}{227}a^{5}-\frac{60352}{227}a^{3}+\frac{690}{227}a$, $\frac{391}{227}a^{16}-\frac{7496}{227}a^{14}+\frac{53590}{227}a^{12}-\frac{179222}{227}a^{10}+\frac{292698}{227}a^{8}-\frac{224272}{227}a^{6}+\frac{75489}{227}a^{4}-\frac{10666}{227}a^{2}+\frac{750}{227}$, $a^{17}-19a^{15}+134a^{13}-439a^{11}+697a^{9}-522a^{7}+185a^{5}-26a^{3}+2a$, $\frac{132}{227}a^{17}-\frac{2346}{227}a^{15}+\frac{14620}{227}a^{13}-\frac{36449}{227}a^{11}+\frac{22555}{227}a^{9}+\frac{37652}{227}a^{7}-\frac{48494}{227}a^{5}+\frac{17797}{227}a^{3}-\frac{2447}{227}a$, $\frac{1007}{227}a^{17}-\frac{19352}{227}a^{15}+\frac{138993}{227}a^{13}-\frac{469476}{227}a^{11}+\frac{785141}{227}a^{9}-\frac{640730}{227}a^{7}+\frac{253395}{227}a^{5}-\frac{44821}{227}a^{3}+\frac{2421}{227}a$, $\frac{296}{227}a^{16}-\frac{5529}{227}a^{14}+\frac{37792}{227}a^{12}-\frac{116018}{227}a^{10}+\frac{157034}{227}a^{8}-\frac{68126}{227}a^{6}-\frac{15000}{227}a^{4}+\frac{12806}{227}a^{2}-\frac{1470}{227}$, $\frac{132}{227}a^{17}-\frac{640}{227}a^{16}-\frac{2573}{227}a^{15}+\frac{12427}{227}a^{14}+\frac{18933}{227}a^{13}-\frac{90682}{227}a^{12}-\frac{66867}{227}a^{11}+\frac{313968}{227}a^{10}+\frac{122208}{227}a^{9}-\frac{544833}{227}a^{8}-\frac{120567}{227}a^{7}+\frac{465351}{227}a^{6}+\frac{70000}{227}a^{5}-\frac{185144}{227}a^{4}-\frac{24198}{227}a^{3}+\frac{28092}{227}a^{2}+\frac{3455}{227}a-\frac{380}{227}$, $a+1$, $\frac{132}{227}a^{17}-\frac{2573}{227}a^{15}+\frac{18933}{227}a^{13}-\frac{66867}{227}a^{11}+\frac{122208}{227}a^{9}-\frac{120567}{227}a^{7}+\frac{70000}{227}a^{5}-\frac{24198}{227}a^{3}+\frac{3228}{227}a-1$, $\frac{1545}{227}a^{17}-\frac{810}{227}a^{16}-\frac{30090}{227}a^{15}+\frac{15696}{227}a^{14}+\frac{220689}{227}a^{13}-\frac{114209}{227}a^{12}-\frac{771076}{227}a^{11}+\frac{393904}{227}a^{10}+\frac{1361216}{227}a^{9}-\frac{680719}{227}a^{8}-\frac{1202636}{227}a^{7}+\frac{581139}{227}a^{6}+\frac{511176}{227}a^{5}-\frac{235543}{227}a^{4}-\frac{90452}{227}a^{3}+\frac{38888}{227}a^{2}+\frac{4145}{227}a-\frac{1545}{227}$, $\frac{523}{227}a^{16}-a^{15}-\frac{9842}{227}a^{14}+19a^{13}+\frac{68210}{227}a^{12}-134a^{11}-\frac{215671}{227}a^{10}+439a^{9}+\frac{315253}{227}a^{8}-697a^{7}-\frac{186620}{227}a^{6}+522a^{5}+\frac{26995}{227}a^{4}-185a^{3}+\frac{7131}{227}a^{2}+25a-\frac{1470}{227}$, $\frac{296}{227}a^{17}-\frac{5529}{227}a^{15}+\frac{37792}{227}a^{13}-\frac{116018}{227}a^{11}+\frac{157034}{227}a^{9}-\frac{68126}{227}a^{7}-\frac{15000}{227}a^{5}+\frac{12806}{227}a^{3}+a^{2}-\frac{1243}{227}a-1$, $\frac{1621}{227}a^{17}+\frac{1098}{227}a^{16}-\frac{31028}{227}a^{15}-\frac{21186}{227}a^{14}+\frac{221251}{227}a^{13}+\frac{153041}{227}a^{12}-\frac{736605}{227}a^{11}-\frac{520934}{227}a^{10}+\frac{1193125}{227}a^{9}+\frac{877872}{227}a^{8}-\frac{899567}{227}a^{7}-\frac{712947}{227}a^{6}+\frac{291282}{227}a^{5}+\frac{264287}{227}a^{4}-\frac{32095}{227}a^{3}-\frac{39226}{227}a^{2}-\frac{208}{227}a+\frac{1262}{227}$, $\frac{1623}{227}a^{17}+\frac{1889}{227}a^{16}-\frac{32116}{227}a^{15}-\frac{36988}{227}a^{14}+\frac{241421}{227}a^{13}+\frac{273579}{227}a^{12}-\frac{877089}{227}a^{11}-\frac{969026}{227}a^{10}+\frac{1645778}{227}a^{9}+\frac{1749015}{227}a^{8}-\frac{1590638}{227}a^{7}-\frac{1599861}{227}a^{6}+\frac{750236}{227}a^{5}+\frac{711320}{227}a^{4}-\frac{142309}{227}a^{3}-\frac{131123}{227}a^{2}+\frac{4546}{227}a+\frac{5314}{227}$, $\frac{2247}{227}a^{17}+\frac{1281}{227}a^{16}-\frac{43784}{227}a^{15}-\frac{25171}{227}a^{14}+\frac{321244}{227}a^{13}+\frac{187136}{227}a^{12}-\frac{1121827}{227}a^{11}-\frac{667760}{227}a^{10}+\frac{1972117}{227}a^{9}+\frac{1216453}{227}a^{8}-\frac{1712101}{227}a^{7}-\frac{1119721}{227}a^{6}+\frac{683957}{227}a^{5}+\frac{489670}{227}a^{4}-\frac{99079}{227}a^{3}-\frac{84051}{227}a^{2}+\frac{2079}{227}a+\frac{3591}{227}$
|
| |
| Regulator: | \( 587034867.509 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{18}\cdot(2\pi)^{0}\cdot 587034867.509 \cdot 1}{2\cdot\sqrt{141204899984457152700528984064}}\cr\approx \mathstrut & 0.204761800581 \end{aligned}\] (assuming GRH)
Galois group
$S_4^3.S_4$ (as 18T883):
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for $S_4^3.S_4$ |
| Character table for $S_4^3.S_4$ |
Intermediate fields
| 3.3.257.1, 9.9.733930477541.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.18.103634579676721781559152395037403098906624.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.9.0.1}{9} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.6.0.1}{6} }$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{5}$ | ${\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.2.6a1.1 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 5$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ |
| 2.6.2.12a8.1 | $x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{9} + 5 x^{8} + 4 x^{7} + 7 x^{6} + 6 x^{5} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $6$ | $12$ | 12T134 | $$[2, 2, 2, 2, 2, 2]^{6}$$ | |
|
\(257\)
| $\Q_{257}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{257}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
|
\(43237\)
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{43237}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |