Normalized defining polynomial
\( x^{18} - 8x^{16} + 13x^{14} + 29x^{12} - 85x^{10} + 30x^{8} + 58x^{6} - 51x^{4} + 13x^{2} - 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[14, 2]$ |
| |
| Discriminant: |
\(11522585241472304020455424\)
\(\medspace = 2^{24}\cdot 37^{6}\cdot 16361^{2}\)
|
| |
| Root discriminant: | \(24.68\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(37\), \(16361\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{8}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{5}+\frac{3}{8}a^{4}+\frac{3}{8}a^{3}-\frac{1}{4}a^{2}+\frac{3}{8}a+\frac{3}{8}$, $\frac{1}{8}a^{16}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}+\frac{1}{8}a^{6}+\frac{3}{8}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{8}a^{2}+\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{6}+\frac{1}{4}a^{5}-\frac{3}{8}a^{4}+\frac{1}{4}a^{3}-\frac{3}{8}a^{2}+\frac{1}{8}a+\frac{3}{8}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{17}-\frac{15}{2}a^{15}+\frac{19}{2}a^{13}+32a^{11}-\frac{135}{2}a^{9}+5a^{7}+48a^{5}-\frac{65}{2}a^{3}+7a$, $\frac{11}{4}a^{16}-\frac{41}{2}a^{14}+\frac{99}{4}a^{12}+92a^{10}-\frac{731}{4}a^{8}-10a^{6}+\frac{291}{2}a^{4}-69a^{2}+\frac{33}{4}$, $\frac{11}{4}a^{17}-21a^{15}+\frac{113}{4}a^{13}+89a^{11}-\frac{801}{4}a^{9}+15a^{7}+\frac{311}{2}a^{5}-\frac{175}{2}a^{3}+\frac{53}{4}a$, $\frac{5}{4}a^{17}-11a^{15}+\frac{93}{4}a^{13}+\frac{61}{2}a^{11}-\frac{571}{4}a^{9}+\frac{175}{2}a^{7}+\frac{203}{2}a^{5}-\frac{213}{2}a^{3}+\frac{81}{4}a$, $\frac{7}{4}a^{17}-13a^{15}+\frac{61}{4}a^{13}+60a^{11}-\frac{461}{4}a^{9}-15a^{7}+\frac{195}{2}a^{5}-\frac{73}{2}a^{3}+\frac{1}{4}a$, $\frac{3}{2}a^{17}-\frac{21}{2}a^{15}+\frac{35}{4}a^{13}+54a^{11}-75a^{9}-\frac{77}{2}a^{7}+\frac{237}{4}a^{5}-\frac{19}{2}a^{3}+\frac{5}{4}a$, $\frac{1}{2}a^{17}+\frac{35}{8}a^{16}-\frac{21}{4}a^{15}-\frac{261}{8}a^{14}+\frac{121}{8}a^{13}+\frac{79}{2}a^{12}+8a^{11}+146a^{10}-\frac{351}{4}a^{9}-\frac{2327}{8}a^{8}+73a^{7}-\frac{115}{8}a^{6}+\frac{521}{8}a^{5}+\frac{1839}{8}a^{4}-\frac{143}{2}a^{3}-\frac{861}{8}a^{2}+\frac{89}{8}a+\frac{47}{4}$, $\frac{27}{8}a^{17}-\frac{17}{8}a^{16}-25a^{15}+\frac{63}{4}a^{14}+\frac{117}{4}a^{13}-\frac{147}{8}a^{12}+\frac{455}{4}a^{11}-\frac{289}{4}a^{10}-\frac{1741}{8}a^{9}+\frac{1101}{8}a^{8}-\frac{83}{4}a^{7}+\frac{65}{4}a^{6}+\frac{1359}{8}a^{5}-\frac{441}{4}a^{4}-75a^{3}+45a^{2}+10a-\frac{33}{8}$, $\frac{3}{8}a^{17}+\frac{9}{8}a^{16}-3a^{15}-\frac{35}{4}a^{14}+\frac{19}{4}a^{13}+\frac{101}{8}a^{12}+\frac{47}{4}a^{11}+\frac{143}{4}a^{10}-\frac{261}{8}a^{9}-\frac{701}{8}a^{8}+\frac{27}{4}a^{7}+\frac{49}{4}a^{6}+\frac{227}{8}a^{5}+\frac{139}{2}a^{4}-\frac{31}{2}a^{3}-\frac{81}{2}a^{2}-a+\frac{39}{8}$, $\frac{3}{8}a^{17}+\frac{9}{8}a^{16}-3a^{15}-\frac{35}{4}a^{14}+\frac{19}{4}a^{13}+\frac{101}{8}a^{12}+\frac{47}{4}a^{11}+\frac{143}{4}a^{10}-\frac{261}{8}a^{9}-\frac{701}{8}a^{8}+\frac{27}{4}a^{7}+\frac{49}{4}a^{6}+\frac{227}{8}a^{5}+\frac{139}{2}a^{4}-\frac{31}{2}a^{3}-\frac{81}{2}a^{2}-a+\frac{31}{8}$, $\frac{15}{4}a^{17}-\frac{57}{2}a^{15}+\frac{151}{4}a^{13}+121a^{11}-\frac{1071}{4}a^{9}+20a^{7}+\frac{407}{2}a^{5}-119a^{3}+\frac{73}{4}a$, $\frac{11}{4}a^{17}+\frac{3}{4}a^{16}-\frac{171}{8}a^{15}-\frac{23}{4}a^{14}+\frac{249}{8}a^{13}+\frac{63}{8}a^{12}+\frac{341}{4}a^{11}+24a^{10}-\frac{853}{4}a^{9}-55a^{8}+\frac{335}{8}a^{7}+\frac{11}{2}a^{6}+\frac{1273}{8}a^{5}+\frac{329}{8}a^{4}-\frac{869}{8}a^{3}-25a^{2}+\frac{149}{8}a+\frac{31}{8}$, $5a^{17}+\frac{11}{8}a^{16}-\frac{293}{8}a^{15}-\frac{83}{8}a^{14}+\frac{81}{2}a^{13}+\frac{107}{8}a^{12}+\frac{683}{4}a^{11}+\frac{89}{2}a^{10}-\frac{1233}{4}a^{9}-\frac{765}{8}a^{8}-\frac{401}{8}a^{7}+\frac{41}{8}a^{6}+\frac{977}{4}a^{5}+\frac{291}{4}a^{4}-\frac{761}{8}a^{3}-\frac{337}{8}a^{2}+\frac{19}{2}a+\frac{45}{8}$, $\frac{9}{8}a^{17}+\frac{7}{4}a^{16}-\frac{37}{4}a^{15}-\frac{111}{8}a^{14}+\frac{131}{8}a^{13}+\frac{173}{8}a^{12}+\frac{125}{4}a^{11}+\frac{213}{4}a^{10}-\frac{841}{8}a^{9}-\frac{583}{4}a^{8}+\frac{185}{4}a^{7}+\frac{295}{8}a^{6}+\frac{299}{4}a^{5}+\frac{889}{8}a^{4}-69a^{3}-\frac{609}{8}a^{2}+\frac{105}{8}a+\frac{93}{8}$
|
| |
| Regulator: | \( 1828417.55183 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{2}\cdot 1828417.55183 \cdot 1}{2\cdot\sqrt{11522585241472304020455424}}\cr\approx \mathstrut & 0.174200780762 \end{aligned}\] (assuming GRH)
Galois group
$S_4^3.S_4$ (as 18T883):
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for $S_4^3.S_4$ |
| Character table for $S_4^3.S_4$ |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | 18.14.9549155080976048926982931891617792.3 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.6.0.1}{6} }$ | ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.9.0.1}{9} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{3}$ | ${\href{/padicField/19.12.0.1}{12} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{3}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | R | ${\href{/padicField/41.9.0.1}{9} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.6.24a3.14 | $x^{18} + 8 x^{16} + 8 x^{15} + 25 x^{14} + 50 x^{13} + 65 x^{12} + 120 x^{11} + 157 x^{10} + 182 x^{9} + 232 x^{8} + 232 x^{7} + 210 x^{6} + 196 x^{5} + 145 x^{4} + 90 x^{3} + 61 x^{2} + 26 x + 7$ | $6$ | $3$ | $24$ | 18T463 | $$[\frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2, 2]_{3}^{6}$$ |
|
\(37\)
| 37.1.2.1a1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 37.1.2.1a1.1 | $x^{2} + 37$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 37.3.1.0a1.1 | $x^{3} + 6 x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 37.3.1.0a1.1 | $x^{3} + 6 x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 37.4.2.4a1.2 | $x^{8} + 12 x^{6} + 48 x^{5} + 40 x^{4} + 288 x^{3} + 600 x^{2} + 96 x + 41$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(16361\)
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{16361}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ |