Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 36 x^{15} + 76 x^{14} - 140 x^{13} + 228 x^{12} - 348 x^{11} + 465 x^{10} + \cdots + 1 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-907273133293160890368\)
\(\medspace = -\,2^{18}\cdot 3^{6}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(14.60\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}7^{5/6}\approx 24.794421938893013$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$: | $C_6$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\zeta_{7})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}+\frac{1}{4}a^{6}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{104}a^{15}-\frac{5}{104}a^{14}-\frac{1}{13}a^{13}-\frac{21}{104}a^{12}+\frac{1}{52}a^{11}-\frac{3}{26}a^{10}-\frac{1}{104}a^{9}-\frac{3}{104}a^{8}-\frac{3}{13}a^{7}-\frac{1}{8}a^{6}+\frac{1}{104}a^{5}-\frac{17}{104}a^{4}+\frac{37}{104}a^{3}-\frac{19}{52}a^{2}+\frac{1}{13}a-\frac{27}{104}$, $\frac{1}{104}a^{16}-\frac{7}{104}a^{14}-\frac{9}{104}a^{13}+\frac{1}{104}a^{12}+\frac{3}{13}a^{11}+\frac{17}{104}a^{10}+\frac{9}{52}a^{9}+\frac{1}{8}a^{8}-\frac{3}{104}a^{7}+\frac{7}{52}a^{6}+\frac{5}{13}a^{5}-\frac{11}{52}a^{4}+\frac{43}{104}a^{3}-\frac{1}{2}a^{2}+\frac{3}{8}a-\frac{5}{104}$, $\frac{1}{48152}a^{17}+\frac{183}{48152}a^{16}-\frac{121}{48152}a^{15}+\frac{2669}{24076}a^{14}+\frac{1661}{24076}a^{13}+\frac{4057}{48152}a^{12}+\frac{6755}{48152}a^{11}+\frac{5875}{48152}a^{10}-\frac{11009}{48152}a^{9}-\frac{955}{24076}a^{8}-\frac{5781}{48152}a^{7}+\frac{9283}{24076}a^{6}-\frac{545}{6019}a^{5}-\frac{18191}{48152}a^{4}+\frac{23879}{48152}a^{3}-\frac{15987}{48152}a^{2}-\frac{6939}{24076}a+\frac{4581}{48152}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -\frac{1173}{48152} a^{17} - \frac{2605}{48152} a^{16} + \frac{25257}{48152} a^{15} - \frac{24007}{24076} a^{14} + \frac{15949}{12038} a^{13} - \frac{194607}{48152} a^{12} + \frac{315007}{48152} a^{11} - \frac{405671}{48152} a^{10} + \frac{680171}{48152} a^{9} - \frac{14309}{926} a^{8} + \frac{675069}{48152} a^{7} - \frac{83487}{6019} a^{6} + \frac{80907}{6019} a^{5} - \frac{544263}{48152} a^{4} + \frac{25967}{3704} a^{3} - \frac{323775}{48152} a^{2} + \frac{4979}{1852} a - \frac{45309}{48152} \)
(order $14$)
|
| |
| Fundamental units: |
$\frac{369}{24076}a^{17}-\frac{12643}{48152}a^{16}+\frac{26653}{24076}a^{15}-\frac{121529}{48152}a^{14}+\frac{244515}{48152}a^{13}-\frac{521493}{48152}a^{12}+\frac{217743}{12038}a^{11}-\frac{1354983}{48152}a^{10}+\frac{1007529}{24076}a^{9}-\frac{2433273}{48152}a^{8}+\frac{2649453}{48152}a^{7}-\frac{316847}{6019}a^{6}+\frac{252472}{6019}a^{5}-\frac{169550}{6019}a^{4}+\frac{694033}{48152}a^{3}-\frac{37996}{6019}a^{2}+\frac{17653}{48152}a-\frac{7919}{48152}$, $\frac{11241}{48152}a^{17}-\frac{70845}{48152}a^{16}+\frac{106325}{24076}a^{15}-\frac{473065}{48152}a^{14}+\frac{504107}{24076}a^{13}-\frac{939577}{24076}a^{12}+\frac{3113241}{48152}a^{11}-\frac{4849981}{48152}a^{10}+\frac{826669}{6019}a^{9}-\frac{7890983}{48152}a^{8}+\frac{8286455}{48152}a^{7}-\frac{7421049}{48152}a^{6}+\frac{5664447}{48152}a^{5}-\frac{1786563}{24076}a^{4}+\frac{945935}{24076}a^{3}-\frac{714993}{48152}a^{2}+\frac{60501}{24076}a-\frac{12345}{12038}$, $\frac{9643}{48152}a^{17}-\frac{22599}{24076}a^{16}+\frac{45121}{24076}a^{15}-\frac{19118}{6019}a^{14}+\frac{358827}{48152}a^{13}-\frac{582451}{48152}a^{12}+\frac{813875}{48152}a^{11}-\frac{153202}{6019}a^{10}+\frac{689917}{24076}a^{9}-\frac{165174}{6019}a^{8}+\frac{155040}{6019}a^{7}-\frac{83445}{3704}a^{6}+\frac{818745}{48152}a^{5}-\frac{243271}{24076}a^{4}+\frac{384771}{48152}a^{3}-\frac{149395}{48152}a^{2}+\frac{95807}{48152}a-\frac{1173}{48152}$, $\frac{8013}{48152}a^{17}-\frac{729}{926}a^{16}+\frac{41413}{24076}a^{15}-\frac{85391}{24076}a^{14}+\frac{31977}{3704}a^{13}-\frac{702249}{48152}a^{12}+\frac{1097647}{48152}a^{11}-\frac{901499}{24076}a^{10}+\frac{578471}{12038}a^{9}-\frac{1361171}{24076}a^{8}+\frac{1538779}{24076}a^{7}-\frac{2848789}{48152}a^{6}+\frac{2248239}{48152}a^{5}-\frac{750777}{24076}a^{4}+\frac{892933}{48152}a^{3}-\frac{369539}{48152}a^{2}+\frac{109583}{48152}a-\frac{39831}{48152}$, $\frac{1167}{48152}a^{17}-\frac{1793}{24076}a^{16}+\frac{8805}{48152}a^{15}-\frac{42815}{48152}a^{14}+\frac{128789}{48152}a^{13}-\frac{27737}{6019}a^{12}+\frac{431563}{48152}a^{11}-\frac{203599}{12038}a^{10}+\frac{1186953}{48152}a^{9}-\frac{1721985}{48152}a^{8}+\frac{552577}{12038}a^{7}-\frac{1129733}{24076}a^{6}+\frac{494315}{12038}a^{5}-\frac{1414349}{48152}a^{4}+\frac{99803}{6019}a^{3}-\frac{245171}{48152}a^{2}+\frac{21875}{48152}a+\frac{1244}{6019}$, $\frac{21673}{48152}a^{17}-\frac{25787}{12038}a^{16}+\frac{212053}{48152}a^{15}-\frac{356309}{48152}a^{14}+\frac{776731}{48152}a^{13}-\frac{599375}{24076}a^{12}+\frac{1632127}{48152}a^{11}-\frac{1143293}{24076}a^{10}+\frac{2111939}{48152}a^{9}-\frac{112615}{3704}a^{8}+\frac{228899}{24076}a^{7}+\frac{327169}{24076}a^{6}-\frac{41551}{1852}a^{5}+\frac{1303099}{48152}a^{4}-\frac{392753}{24076}a^{3}+\frac{430389}{48152}a^{2}-\frac{6029}{3704}a+\frac{25769}{24076}$, $\frac{12653}{12038}a^{17}-\frac{288305}{48152}a^{16}+\frac{95442}{6019}a^{15}-\frac{1547009}{48152}a^{14}+\frac{3283303}{48152}a^{13}-\frac{454219}{3704}a^{12}+\frac{4667155}{24076}a^{11}-\frac{14134509}{48152}a^{10}+\frac{4559075}{12038}a^{9}-\frac{20347537}{48152}a^{8}+\frac{19994903}{48152}a^{7}-\frac{4194733}{12038}a^{6}+\frac{1506750}{6019}a^{5}-\frac{3469251}{24076}a^{4}+\frac{3473567}{48152}a^{3}-\frac{576835}{24076}a^{2}+\frac{249445}{48152}a-\frac{51553}{48152}$, $\frac{19}{6019}a^{17}-\frac{3223}{24076}a^{16}+\frac{24603}{24076}a^{15}-\frac{82777}{24076}a^{14}+\frac{172373}{24076}a^{13}-\frac{161137}{12038}a^{12}+\frac{621259}{24076}a^{11}-\frac{38565}{926}a^{10}+\frac{713693}{12038}a^{9}-\frac{472436}{6019}a^{8}+\frac{1010513}{12038}a^{7}-\frac{432494}{6019}a^{6}+\frac{1208115}{24076}a^{5}-\frac{167837}{6019}a^{4}+\frac{61540}{6019}a^{3}-\frac{1489}{24076}a^{2}-\frac{12971}{12038}a-\frac{15299}{24076}$
|
| |
| Regulator: | \( 7362.5561247660435 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 7362.5561247660435 \cdot 1}{14\cdot\sqrt{907273133293160890368}}\cr\approx \mathstrut & 0.266471258319181 \end{aligned}\]
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.1176.1, \(\Q(\zeta_{7})^+\), 6.0.9680832.1, \(\Q(\zeta_{7})\), 9.3.1626379776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | 12.0.1101670627147776.7 |
| Degree 18 sibling: | 18.6.12542143794644656148447232.1 |
| Minimal sibling: | 12.0.1101670627147776.7 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/11.3.0.1}{3} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{9}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.3.2.9a1.6 | $x^{6} + 2 x^{4} + 6 x^{3} + x^{2} + 6 x + 15$ | $2$ | $3$ | $9$ | $C_6$ | $$[3]^{3}$$ | |
| 2.3.2.9a1.6 | $x^{6} + 2 x^{4} + 6 x^{3} + x^{2} + 6 x + 15$ | $2$ | $3$ | $9$ | $C_6$ | $$[3]^{3}$$ | |
|
\(3\)
| 3.6.1.0a1.1 | $x^{6} + 2 x^{4} + x^{2} + 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ |
| 3.6.2.6a1.2 | $x^{12} + 4 x^{10} + 6 x^{8} + 4 x^{7} + 8 x^{6} + 8 x^{5} + 9 x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $$[\ ]_{2}^{6}$$ | |
|
\(7\)
| 7.3.6.15a1.3 | $x^{18} + 36 x^{17} + 540 x^{16} + 4344 x^{15} + 20160 x^{14} + 55296 x^{13} + 98736 x^{12} + 161280 x^{11} + 238464 x^{10} + 208640 x^{9} + 334080 x^{8} + 138240 x^{7} + 280320 x^{6} + 46080 x^{5} + 138240 x^{4} + 6144 x^{3} + 36864 x^{2} + 4103$ | $6$ | $3$ | $15$ | $C_6 \times C_3$ | $$[\ ]_{6}^{3}$$ |