Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 36 x^{15} + 76 x^{14} - 140 x^{13} + 228 x^{12} - 348 x^{11} + 465 x^{10} - 542 x^{9} + 551 x^{8} - 488 x^{7} + 373 x^{6} - 234 x^{5} + 127 x^{4} - 52 x^{3} + 17 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-907273133293160890368=-\,2^{18}\cdot 3^{6}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{104} a^{15} - \frac{5}{104} a^{14} - \frac{1}{13} a^{13} - \frac{21}{104} a^{12} + \frac{1}{52} a^{11} - \frac{3}{26} a^{10} - \frac{1}{104} a^{9} - \frac{3}{104} a^{8} - \frac{3}{13} a^{7} - \frac{1}{8} a^{6} + \frac{1}{104} a^{5} - \frac{17}{104} a^{4} + \frac{37}{104} a^{3} - \frac{19}{52} a^{2} + \frac{1}{13} a - \frac{27}{104}$, $\frac{1}{104} a^{16} - \frac{7}{104} a^{14} - \frac{9}{104} a^{13} + \frac{1}{104} a^{12} + \frac{3}{13} a^{11} + \frac{17}{104} a^{10} + \frac{9}{52} a^{9} + \frac{1}{8} a^{8} - \frac{3}{104} a^{7} + \frac{7}{52} a^{6} + \frac{5}{13} a^{5} - \frac{11}{52} a^{4} + \frac{43}{104} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a - \frac{5}{104}$, $\frac{1}{48152} a^{17} + \frac{183}{48152} a^{16} - \frac{121}{48152} a^{15} + \frac{2669}{24076} a^{14} + \frac{1661}{24076} a^{13} + \frac{4057}{48152} a^{12} + \frac{6755}{48152} a^{11} + \frac{5875}{48152} a^{10} - \frac{11009}{48152} a^{9} - \frac{955}{24076} a^{8} - \frac{5781}{48152} a^{7} + \frac{9283}{24076} a^{6} - \frac{545}{6019} a^{5} - \frac{18191}{48152} a^{4} + \frac{23879}{48152} a^{3} - \frac{15987}{48152} a^{2} - \frac{6939}{24076} a + \frac{4581}{48152}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1173}{48152} a^{17} - \frac{2605}{48152} a^{16} + \frac{25257}{48152} a^{15} - \frac{24007}{24076} a^{14} + \frac{15949}{12038} a^{13} - \frac{194607}{48152} a^{12} + \frac{315007}{48152} a^{11} - \frac{405671}{48152} a^{10} + \frac{680171}{48152} a^{9} - \frac{14309}{926} a^{8} + \frac{675069}{48152} a^{7} - \frac{83487}{6019} a^{6} + \frac{80907}{6019} a^{5} - \frac{544263}{48152} a^{4} + \frac{25967}{3704} a^{3} - \frac{323775}{48152} a^{2} + \frac{4979}{1852} a - \frac{45309}{48152} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7362.5561247660435 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.1176.1, \(\Q(\zeta_{7})^+\), 6.0.9680832.1, \(\Q(\zeta_{7})\), 9.3.1626379776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||