/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 6*x^17 + 17*x^16 - 36*x^15 + 76*x^14 - 140*x^13 + 228*x^12 - 348*x^11 + 465*x^10 - 542*x^9 + 551*x^8 - 488*x^7 + 373*x^6 - 234*x^5 + 127*x^4 - 52*x^3 + 17*x^2 - 2*x + 1, 18, 6, [0, 9], -907273133293160890368, [2, 3, 7], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/2*a^8 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/2*a^9 - 1/2*a^5 - 1/2*a^3 - 1/2*a, 1/2*a^10 - 1/2*a^6 - 1/2*a^4 - 1/2*a^2, 1/2*a^11 - 1/2*a^7 - 1/2*a^5 - 1/2*a^3, 1/2*a^12 - 1/2*a^6 - 1/2*a^2 - 1/2, 1/4*a^13 - 1/4*a^12 - 1/4*a^11 - 1/4*a^9 + 1/4*a^6 - 1/2*a^4 + 1/4*a^3 + 1/4*a^2 + 1/4, 1/4*a^14 - 1/4*a^11 - 1/4*a^10 - 1/4*a^9 + 1/4*a^7 - 1/4*a^6 - 1/2*a^5 - 1/4*a^4 - 1/2*a^3 - 1/4*a^2 + 1/4*a - 1/4, 1/104*a^15 - 5/104*a^14 - 1/13*a^13 - 21/104*a^12 + 1/52*a^11 - 3/26*a^10 - 1/104*a^9 - 3/104*a^8 - 3/13*a^7 - 1/8*a^6 + 1/104*a^5 - 17/104*a^4 + 37/104*a^3 - 19/52*a^2 + 1/13*a - 27/104, 1/104*a^16 - 7/104*a^14 - 9/104*a^13 + 1/104*a^12 + 3/13*a^11 + 17/104*a^10 + 9/52*a^9 + 1/8*a^8 - 3/104*a^7 + 7/52*a^6 + 5/13*a^5 - 11/52*a^4 + 43/104*a^3 - 1/2*a^2 + 3/8*a - 5/104, 1/48152*a^17 + 183/48152*a^16 - 121/48152*a^15 + 2669/24076*a^14 + 1661/24076*a^13 + 4057/48152*a^12 + 6755/48152*a^11 + 5875/48152*a^10 - 11009/48152*a^9 - 955/24076*a^8 - 5781/48152*a^7 + 9283/24076*a^6 - 545/6019*a^5 - 18191/48152*a^4 + 23879/48152*a^3 - 15987/48152*a^2 - 6939/24076*a + 4581/48152], 0, 1, [], 0, [ (369)/(24076)*a^(17) - (12643)/(48152)*a^(16) + (26653)/(24076)*a^(15) - (121529)/(48152)*a^(14) + (244515)/(48152)*a^(13) - (521493)/(48152)*a^(12) + (217743)/(12038)*a^(11) - (1354983)/(48152)*a^(10) + (1007529)/(24076)*a^(9) - (2433273)/(48152)*a^(8) + (2649453)/(48152)*a^(7) - (316847)/(6019)*a^(6) + (252472)/(6019)*a^(5) - (169550)/(6019)*a^(4) + (694033)/(48152)*a^(3) - (37996)/(6019)*a^(2) + (17653)/(48152)*a - (7919)/(48152) , (11241)/(48152)*a^(17) - (70845)/(48152)*a^(16) + (106325)/(24076)*a^(15) - (473065)/(48152)*a^(14) + (504107)/(24076)*a^(13) - (939577)/(24076)*a^(12) + (3113241)/(48152)*a^(11) - (4849981)/(48152)*a^(10) + (826669)/(6019)*a^(9) - (7890983)/(48152)*a^(8) + (8286455)/(48152)*a^(7) - (7421049)/(48152)*a^(6) + (5664447)/(48152)*a^(5) - (1786563)/(24076)*a^(4) + (945935)/(24076)*a^(3) - (714993)/(48152)*a^(2) + (60501)/(24076)*a - (12345)/(12038) , (9643)/(48152)*a^(17) - (22599)/(24076)*a^(16) + (45121)/(24076)*a^(15) - (19118)/(6019)*a^(14) + (358827)/(48152)*a^(13) - (582451)/(48152)*a^(12) + (813875)/(48152)*a^(11) - (153202)/(6019)*a^(10) + (689917)/(24076)*a^(9) - (165174)/(6019)*a^(8) + (155040)/(6019)*a^(7) - (83445)/(3704)*a^(6) + (818745)/(48152)*a^(5) - (243271)/(24076)*a^(4) + (384771)/(48152)*a^(3) - (149395)/(48152)*a^(2) + (95807)/(48152)*a - (1173)/(48152) , (8013)/(48152)*a^(17) - (729)/(926)*a^(16) + (41413)/(24076)*a^(15) - (85391)/(24076)*a^(14) + (31977)/(3704)*a^(13) - (702249)/(48152)*a^(12) + (1097647)/(48152)*a^(11) - (901499)/(24076)*a^(10) + (578471)/(12038)*a^(9) - (1361171)/(24076)*a^(8) + (1538779)/(24076)*a^(7) - (2848789)/(48152)*a^(6) + (2248239)/(48152)*a^(5) - (750777)/(24076)*a^(4) + (892933)/(48152)*a^(3) - (369539)/(48152)*a^(2) + (109583)/(48152)*a - (39831)/(48152) , (1167)/(48152)*a^(17) - (1793)/(24076)*a^(16) + (8805)/(48152)*a^(15) - (42815)/(48152)*a^(14) + (128789)/(48152)*a^(13) - (27737)/(6019)*a^(12) + (431563)/(48152)*a^(11) - (203599)/(12038)*a^(10) + (1186953)/(48152)*a^(9) - (1721985)/(48152)*a^(8) + (552577)/(12038)*a^(7) - (1129733)/(24076)*a^(6) + (494315)/(12038)*a^(5) - (1414349)/(48152)*a^(4) + (99803)/(6019)*a^(3) - (245171)/(48152)*a^(2) + (21875)/(48152)*a + (1244)/(6019) , (21673)/(48152)*a^(17) - (25787)/(12038)*a^(16) + (212053)/(48152)*a^(15) - (356309)/(48152)*a^(14) + (776731)/(48152)*a^(13) - (599375)/(24076)*a^(12) + (1632127)/(48152)*a^(11) - (1143293)/(24076)*a^(10) + (2111939)/(48152)*a^(9) - (112615)/(3704)*a^(8) + (228899)/(24076)*a^(7) + (327169)/(24076)*a^(6) - (41551)/(1852)*a^(5) + (1303099)/(48152)*a^(4) - (392753)/(24076)*a^(3) + (430389)/(48152)*a^(2) - (6029)/(3704)*a + (25769)/(24076) , (12653)/(12038)*a^(17) - (288305)/(48152)*a^(16) + (95442)/(6019)*a^(15) - (1547009)/(48152)*a^(14) + (3283303)/(48152)*a^(13) - (454219)/(3704)*a^(12) + (4667155)/(24076)*a^(11) - (14134509)/(48152)*a^(10) + (4559075)/(12038)*a^(9) - (20347537)/(48152)*a^(8) + (19994903)/(48152)*a^(7) - (4194733)/(12038)*a^(6) + (1506750)/(6019)*a^(5) - (3469251)/(24076)*a^(4) + (3473567)/(48152)*a^(3) - (576835)/(24076)*a^(2) + (249445)/(48152)*a - (51553)/(48152) , (19)/(6019)*a^(17) - (3223)/(24076)*a^(16) + (24603)/(24076)*a^(15) - (82777)/(24076)*a^(14) + (172373)/(24076)*a^(13) - (161137)/(12038)*a^(12) + (621259)/(24076)*a^(11) - (38565)/(926)*a^(10) + (713693)/(12038)*a^(9) - (472436)/(6019)*a^(8) + (1010513)/(12038)*a^(7) - (432494)/(6019)*a^(6) + (1208115)/(24076)*a^(5) - (167837)/(6019)*a^(4) + (61540)/(6019)*a^(3) - (1489)/(24076)*a^(2) - (12971)/(12038)*a - (15299)/(24076) ], 7362.5561247660435, [[x^2 - x + 2, 1], [x^3 - x^2 - 2*x - 6, 1], [x^3 - x^2 - 2*x + 1, 1], [x^6 - 3*x^5 - 5*x^4 + 15*x^3 + 18*x^2 - 26*x + 8, 1], [x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1], [x^9 - 4*x^8 + 4*x^7 - x^6 + 5*x^5 - 11*x^4 + 11*x^3 - 6*x^2 + x + 1, 1]]]