Normalized defining polynomial
\( x^{18} - 29x^{12} + 999x^{6} + 729 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-809695024340348725484322816\)
\(\medspace = -\,2^{24}\cdot 3^{20}\cdot 7^{12}\)
|
| |
| Root discriminant: | \(31.25\) |
| |
| Galois root discriminant: | $2^{4/3}3^{7/6}7^{2/3}\approx 33.22105993570567$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-1}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{6}+\frac{1}{6}a^{3}-\frac{1}{2}$, $\frac{1}{18}a^{10}-\frac{1}{2}a^{7}+\frac{7}{18}a^{4}-\frac{1}{2}a$, $\frac{1}{54}a^{11}+\frac{1}{18}a^{9}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{25}{54}a^{5}+\frac{7}{18}a^{3}-\frac{1}{6}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{2430}a^{12}+\frac{16}{243}a^{6}-\frac{13}{90}$, $\frac{1}{7290}a^{13}+\frac{259}{729}a^{7}-\frac{103}{270}a$, $\frac{1}{7290}a^{14}+\frac{16}{729}a^{8}+\frac{77}{270}a^{2}$, $\frac{1}{21870}a^{15}-\frac{211}{4374}a^{9}-\frac{1}{2}a^{6}+\frac{16}{405}a^{3}-\frac{1}{2}$, $\frac{1}{65610}a^{16}+\frac{1}{21870}a^{14}+\frac{1}{7290}a^{12}-\frac{211}{13122}a^{10}+\frac{259}{2187}a^{8}-\frac{1}{2}a^{7}+\frac{259}{729}a^{6}+\frac{16}{1215}a^{4}+\frac{167}{810}a^{2}-\frac{1}{2}a-\frac{103}{270}$, $\frac{1}{65610}a^{17}+\frac{16}{6561}a^{11}+\frac{1}{18}a^{9}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{1157}{2430}a^{5}+\frac{7}{18}a^{3}-\frac{1}{3}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}$, which has order $3$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}$, which has order $3$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( \frac{5}{4374} a^{15} - \frac{86}{2187} a^{9} + \frac{187}{162} a^{3} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{19}{21870}a^{16}+\frac{5}{4374}a^{15}-\frac{7}{7290}a^{13}-\frac{121}{4374}a^{10}-\frac{86}{2187}a^{9}+\frac{19}{1458}a^{7}+\frac{394}{405}a^{4}+\frac{187}{162}a^{3}-\frac{112}{135}a$, $\frac{19}{21870}a^{16}-\frac{7}{7290}a^{13}-\frac{121}{4374}a^{10}+\frac{19}{1458}a^{7}+\frac{394}{405}a^{4}-\frac{112}{135}a+1$, $\frac{103}{65610}a^{16}-\frac{7}{10935}a^{14}-\frac{7}{3645}a^{12}-\frac{296}{6561}a^{10}+\frac{19}{2187}a^{8}+\frac{19}{729}a^{6}+\frac{3971}{2430}a^{4}-\frac{89}{405}a^{2}-\frac{224}{135}$, $\frac{1}{2430}a^{12}+\frac{16}{243}a^{6}-\frac{13}{90}$, $\frac{16}{10935}a^{15}-\frac{1}{405}a^{12}-\frac{191}{4374}a^{9}+\frac{17}{162}a^{6}+\frac{1429}{810}a^{3}-\frac{49}{30}$, $\frac{4}{10935}a^{17}+\frac{53}{65610}a^{16}-\frac{11}{7290}a^{15}+\frac{53}{21870}a^{14}-\frac{13}{3645}a^{13}+\frac{16}{3645}a^{12}-\frac{34}{2187}a^{11}-\frac{124}{6561}a^{10}+\frac{53}{1458}a^{9}-\frac{124}{2187}a^{8}+\frac{70}{729}a^{7}-\frac{191}{1458}a^{6}+\frac{233}{405}a^{5}+\frac{1291}{2430}a^{4}-\frac{161}{135}a^{3}+\frac{1291}{810}a^{2}-\frac{236}{135}a+\frac{349}{270}$, $\frac{167}{65610}a^{17}+\frac{5}{2187}a^{15}-\frac{487}{6561}a^{11}-\frac{172}{2187}a^{9}+\frac{6019}{2430}a^{5}+\frac{187}{81}a^{3}$, $\frac{139}{21870}a^{17}-\frac{19}{10935}a^{16}+\frac{11}{7290}a^{15}-\frac{1}{1215}a^{14}+\frac{1}{7290}a^{13}+\frac{2}{243}a^{12}-\frac{817}{4374}a^{11}+\frac{121}{2187}a^{10}-\frac{53}{1458}a^{9}+\frac{17}{486}a^{8}+\frac{16}{729}a^{7}-\frac{89}{486}a^{6}+\frac{2614}{405}a^{5}-\frac{788}{405}a^{4}+\frac{161}{135}a^{3}-\frac{139}{90}a^{2}-\frac{463}{270}a+\frac{101}{18}$
|
| |
| Regulator: | \( 3131117.232313821 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 3131117.232313821 \cdot 3}{4\cdot\sqrt{809695024340348725484322816}}\cr\approx \mathstrut & 1.25955945326426 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.108.1, 3.1.588.1, 3.1.1323.1, 3.1.5292.1, 6.0.186624.1, 6.0.112021056.1, 6.0.5531904.1, 6.0.448084224.1, 9.1.444611571264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.2429085073021046176452968448.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{9}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{3}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
| 2.2.6.16a1.5 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$ | $6$ | $2$ | $16$ | $D_6$ | $$[2]_{3}^{2}$$ | |
|
\(3\)
| 3.2.3.6a2.1 | $x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 39 x^{2} + 30 x + 17$ | $3$ | $2$ | $6$ | $D_{6}$ | $$[\frac{3}{2}]_{2}^{2}$$ |
| 3.2.6.14a1.3 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3123 x^{4} + 2252 x^{3} + 1176 x^{2} + 408 x + 79$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ | |
|
\(7\)
| 7.6.3.12a1.3 | $x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $$[\ ]_{3}^{6}$$ |