Properties

Label 18.0.809...816.1
Degree $18$
Signature $[0, 9]$
Discriminant $-8.097\times 10^{26}$
Root discriminant \(31.25\)
Ramified primes $2,3,7$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_6:S_3$ (as 18T12)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^18 - 29*x^12 + 999*x^6 + 729)
 
Copy content gp:K = bnfinit(y^18 - 29*y^12 + 999*y^6 + 729, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 29*x^12 + 999*x^6 + 729);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 29*x^12 + 999*x^6 + 729)
 

\( x^{18} - 29x^{12} + 999x^{6} + 729 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $18$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-809695024340348725484322816\) \(\medspace = -\,2^{24}\cdot 3^{20}\cdot 7^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(31.25\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{4/3}3^{7/6}7^{2/3}\approx 33.22105993570567$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-1}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{6}+\frac{1}{6}a^{3}-\frac{1}{2}$, $\frac{1}{18}a^{10}-\frac{1}{2}a^{7}+\frac{7}{18}a^{4}-\frac{1}{2}a$, $\frac{1}{54}a^{11}+\frac{1}{18}a^{9}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{25}{54}a^{5}+\frac{7}{18}a^{3}-\frac{1}{6}a^{2}-\frac{1}{3}a-\frac{1}{2}$, $\frac{1}{2430}a^{12}+\frac{16}{243}a^{6}-\frac{13}{90}$, $\frac{1}{7290}a^{13}+\frac{259}{729}a^{7}-\frac{103}{270}a$, $\frac{1}{7290}a^{14}+\frac{16}{729}a^{8}+\frac{77}{270}a^{2}$, $\frac{1}{21870}a^{15}-\frac{211}{4374}a^{9}-\frac{1}{2}a^{6}+\frac{16}{405}a^{3}-\frac{1}{2}$, $\frac{1}{65610}a^{16}+\frac{1}{21870}a^{14}+\frac{1}{7290}a^{12}-\frac{211}{13122}a^{10}+\frac{259}{2187}a^{8}-\frac{1}{2}a^{7}+\frac{259}{729}a^{6}+\frac{16}{1215}a^{4}+\frac{167}{810}a^{2}-\frac{1}{2}a-\frac{103}{270}$, $\frac{1}{65610}a^{17}+\frac{16}{6561}a^{11}+\frac{1}{18}a^{9}-\frac{1}{3}a^{7}-\frac{1}{2}a^{6}+\frac{1157}{2430}a^{5}+\frac{7}{18}a^{3}-\frac{1}{3}a-\frac{1}{2}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{3}$, which has order $3$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $8$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( \frac{5}{4374} a^{15} - \frac{86}{2187} a^{9} + \frac{187}{162} a^{3} \)  (order $4$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{19}{21870}a^{16}+\frac{5}{4374}a^{15}-\frac{7}{7290}a^{13}-\frac{121}{4374}a^{10}-\frac{86}{2187}a^{9}+\frac{19}{1458}a^{7}+\frac{394}{405}a^{4}+\frac{187}{162}a^{3}-\frac{112}{135}a$, $\frac{19}{21870}a^{16}-\frac{7}{7290}a^{13}-\frac{121}{4374}a^{10}+\frac{19}{1458}a^{7}+\frac{394}{405}a^{4}-\frac{112}{135}a+1$, $\frac{103}{65610}a^{16}-\frac{7}{10935}a^{14}-\frac{7}{3645}a^{12}-\frac{296}{6561}a^{10}+\frac{19}{2187}a^{8}+\frac{19}{729}a^{6}+\frac{3971}{2430}a^{4}-\frac{89}{405}a^{2}-\frac{224}{135}$, $\frac{1}{2430}a^{12}+\frac{16}{243}a^{6}-\frac{13}{90}$, $\frac{16}{10935}a^{15}-\frac{1}{405}a^{12}-\frac{191}{4374}a^{9}+\frac{17}{162}a^{6}+\frac{1429}{810}a^{3}-\frac{49}{30}$, $\frac{4}{10935}a^{17}+\frac{53}{65610}a^{16}-\frac{11}{7290}a^{15}+\frac{53}{21870}a^{14}-\frac{13}{3645}a^{13}+\frac{16}{3645}a^{12}-\frac{34}{2187}a^{11}-\frac{124}{6561}a^{10}+\frac{53}{1458}a^{9}-\frac{124}{2187}a^{8}+\frac{70}{729}a^{7}-\frac{191}{1458}a^{6}+\frac{233}{405}a^{5}+\frac{1291}{2430}a^{4}-\frac{161}{135}a^{3}+\frac{1291}{810}a^{2}-\frac{236}{135}a+\frac{349}{270}$, $\frac{167}{65610}a^{17}+\frac{5}{2187}a^{15}-\frac{487}{6561}a^{11}-\frac{172}{2187}a^{9}+\frac{6019}{2430}a^{5}+\frac{187}{81}a^{3}$, $\frac{139}{21870}a^{17}-\frac{19}{10935}a^{16}+\frac{11}{7290}a^{15}-\frac{1}{1215}a^{14}+\frac{1}{7290}a^{13}+\frac{2}{243}a^{12}-\frac{817}{4374}a^{11}+\frac{121}{2187}a^{10}-\frac{53}{1458}a^{9}+\frac{17}{486}a^{8}+\frac{16}{729}a^{7}-\frac{89}{486}a^{6}+\frac{2614}{405}a^{5}-\frac{788}{405}a^{4}+\frac{161}{135}a^{3}-\frac{139}{90}a^{2}-\frac{463}{270}a+\frac{101}{18}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3131117.232313821 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 3131117.232313821 \cdot 3}{4\cdot\sqrt{809695024340348725484322816}}\cr\approx \mathstrut & 1.25955945326426 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^18 - 29*x^12 + 999*x^6 + 729) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 29*x^12 + 999*x^6 + 729, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 29*x^12 + 999*x^6 + 729); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 29*x^12 + 999*x^6 + 729); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6:S_3$ (as 18T12):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 12 conjugacy class representatives for $C_6:S_3$
Character table for $C_6:S_3$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.1.108.1, 3.1.588.1, 3.1.1323.1, 3.1.5292.1, 6.0.186624.1, 6.0.112021056.1, 6.0.5531904.1, 6.0.448084224.1, 9.1.444611571264.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 18 sibling: 18.2.2429085073021046176452968448.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.2.0.1}{2} }^{8}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ R ${\href{/padicField/11.2.0.1}{2} }^{9}$ ${\href{/padicField/13.3.0.1}{3} }^{6}$ ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{3}$ ${\href{/padicField/23.2.0.1}{2} }^{9}$ ${\href{/padicField/29.2.0.1}{2} }^{8}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{6}$ ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{3}$ ${\href{/padicField/47.2.0.1}{2} }^{9}$ ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.6.8a1.1$x^{6} + 2 x^{3} + 2$$6$$1$$8$$D_{6}$$$[2]_{3}^{2}$$
2.2.6.16a1.5$x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 143 x^{6} + 132 x^{5} + 102 x^{4} + 64 x^{3} + 33 x^{2} + 12 x + 5$$6$$2$$16$$D_6$$$[2]_{3}^{2}$$
\(3\) Copy content Toggle raw display 3.2.3.6a2.1$x^{6} + 6 x^{5} + 18 x^{4} + 32 x^{3} + 39 x^{2} + 30 x + 17$$3$$2$$6$$D_{6}$$$[\frac{3}{2}]_{2}^{2}$$
3.2.6.14a1.3$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3123 x^{4} + 2252 x^{3} + 1176 x^{2} + 408 x + 79$$6$$2$$14$$D_6$$$[\frac{3}{2}]_{2}^{2}$$
\(7\) Copy content Toggle raw display 7.6.3.12a1.3$x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$$3$$6$$12$$C_6 \times C_3$$$[\ ]_{3}^{6}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)