Normalized defining polynomial
\( x^{18} - 58x^{12} + 3996x^{6} + 5832 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-414563852462258547447973281792\)
\(\medspace = -\,2^{33}\cdot 3^{20}\cdot 7^{12}\)
|
| |
| Root discriminant: | \(44.20\) |
| |
| Galois root discriminant: | $2^{11/6}3^{7/6}7^{2/3}\approx 46.98167351748441$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{12}a^{8}+\frac{1}{6}a^{2}$, $\frac{1}{12}a^{9}+\frac{1}{6}a^{3}$, $\frac{1}{36}a^{10}+\frac{7}{18}a^{4}$, $\frac{1}{108}a^{11}-\frac{1}{36}a^{9}-\frac{1}{6}a^{7}+\frac{25}{54}a^{5}-\frac{7}{18}a^{3}-\frac{1}{3}a$, $\frac{1}{9720}a^{12}+\frac{8}{243}a^{6}-\frac{13}{90}$, $\frac{1}{29160}a^{13}+\frac{259}{1458}a^{7}-\frac{103}{270}a$, $\frac{1}{29160}a^{14}+\frac{8}{729}a^{8}+\frac{77}{270}a^{2}$, $\frac{1}{87480}a^{15}-\frac{211}{8748}a^{9}+\frac{16}{405}a^{3}$, $\frac{1}{524880}a^{16}+\frac{1}{87480}a^{14}-\frac{1}{29160}a^{12}+\frac{259}{26244}a^{10}-\frac{211}{8748}a^{8}-\frac{259}{1458}a^{6}-\frac{1453}{4860}a^{4}+\frac{16}{405}a^{2}+\frac{103}{270}$, $\frac{1}{524880}a^{17}+\frac{4}{6561}a^{11}+\frac{1}{36}a^{9}+\frac{1}{6}a^{7}+\frac{1157}{4860}a^{5}+\frac{7}{18}a^{3}+\frac{1}{3}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19}{87480}a^{16}-\frac{121}{8748}a^{10}+\frac{394}{405}a^{4}-1$, $\frac{11}{524880}a^{16}-\frac{5}{17496}a^{14}-\frac{7}{14580}a^{12}-\frac{67}{26244}a^{10}+\frac{43}{2187}a^{8}+\frac{19}{1458}a^{6}+\frac{757}{4860}a^{4}-\frac{187}{162}a^{2}-\frac{224}{135}$, $\frac{1}{9720}a^{12}+\frac{8}{243}a^{6}-\frac{13}{90}$, $\frac{103}{524880}a^{17}+\frac{19}{87480}a^{16}-\frac{13}{29160}a^{14}-\frac{7}{14580}a^{13}-\frac{74}{6561}a^{11}-\frac{121}{8748}a^{10}+\frac{35}{1458}a^{8}+\frac{19}{1458}a^{7}+\frac{3971}{4860}a^{5}+\frac{394}{405}a^{4}-\frac{371}{270}a^{2}-\frac{224}{135}a-1$, $\frac{13}{34992}a^{16}-\frac{175}{8748}a^{10}+\frac{479}{324}a^{4}-2$, $\frac{433}{524880}a^{17}+\frac{7}{7290}a^{16}+\frac{11}{10935}a^{15}+\frac{1}{1080}a^{14}-\frac{2}{3645}a^{13}+\frac{1}{4860}a^{12}-\frac{667}{13122}a^{11}-\frac{157}{2916}a^{10}-\frac{293}{4374}a^{9}-\frac{1}{27}a^{8}-\frac{13}{1458}a^{7}+\frac{16}{243}a^{6}+\frac{16241}{4860}a^{5}+\frac{1061}{270}a^{4}+\frac{1723}{405}a^{3}+\frac{91}{30}a^{2}-\frac{31}{135}a-\frac{148}{45}$, $\frac{49}{87480}a^{17}+\frac{173}{524880}a^{16}+\frac{17}{43740}a^{15}+\frac{5}{8748}a^{14}-\frac{1}{5832}a^{13}-\frac{59}{29160}a^{12}-\frac{295}{8748}a^{11}-\frac{391}{26244}a^{10}-\frac{127}{8748}a^{9}-\frac{86}{2187}a^{8}-\frac{40}{729}a^{7}+\frac{14}{729}a^{6}+\frac{949}{405}a^{5}+\frac{5671}{4860}a^{4}+\frac{503}{810}a^{3}+\frac{25}{81}a^{2}-\frac{77}{54}a-\frac{943}{270}$, $\frac{119}{43740}a^{15}+\frac{47}{1215}a^{12}+\frac{1541}{8748}a^{9}-\frac{59}{486}a^{6}-\frac{619}{810}a^{3}+\frac{76}{45}$
|
| |
| Regulator: | \( 50024296.556075595 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 50024296.556075595 \cdot 6}{2\cdot\sqrt{414563852462258547447973281792}}\cr\approx \mathstrut & 3.55733974394770 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $C_6:S_3$ |
| Character table for $C_6:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 3.1.1323.1, 3.1.108.1, 3.1.588.1, 3.1.5292.1, 6.0.896168448.4, 6.0.44255232.2, 6.0.1492992.1, 6.0.3584673792.8, 9.1.444611571264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | 18.2.1243691557386775642343919845376.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{9}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{8}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{3}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.2.0.1}{2} }^{9}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{9}$ | ${\href{/padicField/53.2.0.1}{2} }^{9}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.11a1.1 | $x^{6} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ |
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
| 3.1.3.3a1.1 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
|
\(7\)
| 7.6.3.12a1.3 | $x^{18} + 3 x^{16} + 15 x^{15} + 15 x^{14} + 48 x^{13} + 109 x^{12} + 171 x^{11} + 333 x^{10} + 497 x^{9} + 717 x^{8} + 1032 x^{7} + 1216 x^{6} + 1296 x^{5} + 1143 x^{4} + 783 x^{3} + 432 x^{2} + 162 x + 34$ | $3$ | $6$ | $12$ | $C_6 \times C_3$ | $$[\ ]_{3}^{6}$$ |