Normalized defining polynomial
\( x^{18} + 27 x^{16} + 351 x^{14} + 2646 x^{12} + 12465 x^{10} - 5 x^{9} + 35964 x^{8} + 468 x^{7} + 61488 x^{6} + 4752 x^{5} + 51840 x^{4} + 9600 x^{3} + 20736 x^{2} + 2304 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39739057971752889532465351767=-\,3^{44}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(189=3^{3}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{189}(64,·)$, $\chi_{189}(1,·)$, $\chi_{189}(139,·)$, $\chi_{189}(76,·)$, $\chi_{189}(13,·)$, $\chi_{189}(148,·)$, $\chi_{189}(85,·)$, $\chi_{189}(22,·)$, $\chi_{189}(160,·)$, $\chi_{189}(97,·)$, $\chi_{189}(34,·)$, $\chi_{189}(169,·)$, $\chi_{189}(106,·)$, $\chi_{189}(43,·)$, $\chi_{189}(181,·)$, $\chi_{189}(118,·)$, $\chi_{189}(55,·)$, $\chi_{189}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{3}{8} a^{8} + \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{3}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{5}{16} a^{9} + \frac{1}{8} a^{7} - \frac{7}{16} a^{5} - \frac{5}{16} a^{4}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{5}{32} a^{10} + \frac{1}{16} a^{8} - \frac{7}{32} a^{6} - \frac{5}{32} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{13} - \frac{5}{64} a^{11} - \frac{15}{32} a^{9} - \frac{7}{64} a^{7} - \frac{5}{64} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{2571136} a^{16} - \frac{1177}{321392} a^{15} + \frac{7691}{2571136} a^{14} - \frac{2879}{160696} a^{13} + \frac{71295}{2571136} a^{12} + \frac{7463}{80348} a^{11} + \frac{215979}{1285568} a^{10} + \frac{41113}{321392} a^{9} + \frac{413313}{2571136} a^{8} - \frac{866365}{2571136} a^{7} - \frac{181171}{642784} a^{6} - \frac{223733}{642784} a^{5} + \frac{68235}{321392} a^{4} + \frac{2360}{20087} a^{3} + \frac{2697}{20087} a^{2} - \frac{12337}{40174} a + \frac{5414}{20087}$, $\frac{1}{74232187974706333938944} a^{17} - \frac{831127728464451}{37116093987353166969472} a^{16} + \frac{377271533833022271719}{74232187974706333938944} a^{15} - \frac{278331278352787660949}{37116093987353166969472} a^{14} - \frac{29942816978172247401}{1400607320277477998848} a^{13} + \frac{1955755165701272933671}{37116093987353166969472} a^{12} + \frac{1096579039430598341909}{37116093987353166969472} a^{11} - \frac{961025827654799578423}{18558046993676583484736} a^{10} - \frac{9671586112271963586087}{74232187974706333938944} a^{9} + \frac{11480494090110452449605}{74232187974706333938944} a^{8} - \frac{8132261261468205560909}{37116093987353166969472} a^{7} - \frac{4056772702328006763867}{9279023496838291742368} a^{6} + \frac{710126919121812551673}{4639511748419145871184} a^{5} + \frac{235751092229239154461}{579938968552393233898} a^{4} + \frac{1091383716516322603135}{2319755874209572935592} a^{3} + \frac{326613003505981304781}{1159877937104786467796} a^{2} - \frac{139489603323674068435}{579938968552393233898} a + \frac{141328716160354249477}{289969484276196616949}$
Class group and class number
$C_{163}$, which has order $163$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40934.0329443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{9})^+\), 6.0.2250423.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||