Normalized defining polynomial
\( x^{18} + 15 x^{16} - 70 x^{15} + 225 x^{14} - 2100 x^{13} + 5475 x^{12} - 31500 x^{11} + \cdots + 343000000 \)
Invariants
| Degree: | $18$ |
| |
| Signature: | $[0, 9]$ |
| |
| Discriminant: |
\(-327356346842831533869771240234375\)
\(\medspace = -\,3^{24}\cdot 5^{12}\cdot 7^{15}\)
|
| |
| Root discriminant: | \(64.03\) |
| |
| Galois root discriminant: | $3^{4/3}5^{2/3}7^{5/6}\approx 64.03096433292906$ | ||
| Ramified primes: |
\(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-7}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_3\times S_3$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\zeta_{7})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5}a^{3}$, $\frac{1}{5}a^{4}$, $\frac{1}{5}a^{5}$, $\frac{1}{25}a^{6}$, $\frac{1}{50}a^{7}-\frac{1}{50}a^{6}-\frac{1}{10}a^{5}-\frac{1}{10}a^{4}-\frac{1}{10}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{100}a^{8}-\frac{1}{100}a^{7}+\frac{1}{100}a^{6}+\frac{1}{20}a^{5}-\frac{1}{20}a^{4}-\frac{1}{20}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{500}a^{9}-\frac{1}{50}a^{6}-\frac{1}{10}a^{4}-\frac{1}{10}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{500}a^{10}-\frac{1}{50}a^{6}+\frac{1}{20}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{500}a^{11}-\frac{1}{50}a^{6}-\frac{1}{10}a^{5}-\frac{1}{20}a^{4}-\frac{1}{2}a$, $\frac{1}{2500}a^{12}+\frac{1}{20}a^{5}-\frac{1}{10}a^{4}-\frac{1}{10}a^{3}-\frac{1}{2}a$, $\frac{1}{2500}a^{13}+\frac{1}{100}a^{6}-\frac{1}{10}a^{5}-\frac{1}{10}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{17500}a^{14}+\frac{1}{17500}a^{12}+\frac{3}{3500}a^{10}+\frac{1}{350}a^{8}-\frac{1}{100}a^{7}-\frac{3}{175}a^{6}+\frac{1}{20}a^{5}+\frac{3}{70}a^{4}+\frac{1}{20}a^{3}-\frac{5}{14}a^{2}-\frac{1}{2}a$, $\frac{1}{1184788325000}a^{15}+\frac{150169}{5923941625}a^{14}+\frac{2534359}{47391533000}a^{13}+\frac{4704027}{23695766500}a^{12}+\frac{44785631}{47391533000}a^{11}-\frac{753027}{947830660}a^{10}+\frac{5474797}{9478306600}a^{9}-\frac{3702047}{1184788325}a^{8}-\frac{19138183}{9478306600}a^{7}+\frac{28694929}{4739153300}a^{6}-\frac{34626601}{379132264}a^{5}+\frac{17216739}{189566132}a^{4}-\frac{150185269}{1895661320}a^{3}+\frac{4691663}{94783066}a^{2}+\frac{3364924}{6770219}a-\frac{906083}{6770219}$, $\frac{1}{33\cdots 00}a^{16}+\frac{61989}{23\cdots 00}a^{15}-\frac{137990922507953}{66\cdots 00}a^{14}+\frac{5176487649041}{67\cdots 00}a^{13}+\frac{373031957755369}{66\cdots 00}a^{12}+\frac{9438111767219}{47\cdots 00}a^{11}+\frac{13\cdots 27}{13\cdots 00}a^{10}-\frac{1256802627614}{23\cdots 75}a^{9}+\frac{3770123962173}{815025935772496}a^{8}-\frac{9395128026381}{27\cdots 00}a^{7}+\frac{17987572543667}{26\cdots 00}a^{6}-\frac{634528857591}{189202449375758}a^{5}+\frac{46\cdots 81}{52\cdots 40}a^{4}-\frac{12215453537817}{540578426787880}a^{3}+\frac{4350176430095}{54057842678788}a^{2}+\frac{1799061950641}{13514460669697}a-\frac{3726876576936}{13514460669697}$, $\frac{1}{66\cdots 00}a^{17}-\frac{25595653}{66\cdots 00}a^{15}-\frac{24694340247557}{94\cdots 00}a^{14}-\frac{599160720491687}{13\cdots 00}a^{13}-\frac{971375264779}{94\cdots 00}a^{12}+\frac{24\cdots 11}{26\cdots 00}a^{11}+\frac{40915528380647}{94\cdots 00}a^{10}+\frac{15\cdots 01}{26\cdots 00}a^{9}-\frac{144616995430651}{37\cdots 00}a^{8}-\frac{44\cdots 17}{52\cdots 00}a^{7}-\frac{6625901974784}{337861516742425}a^{6}-\frac{95\cdots 59}{10\cdots 80}a^{5}-\frac{563493940191419}{75\cdots 20}a^{4}-\frac{1501192767}{133035050890}a^{3}-\frac{17319662067185}{54057842678788}a^{2}-\frac{2545066306688}{13514460669697}a+\frac{757035304357}{13514460669697}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{9}$, which has order $27$ (assuming GRH) |
| |
| Narrow class group: | $C_{3}\times C_{9}$, which has order $27$ (assuming GRH) |
|
Unit group
| Rank: | $8$ |
| |
| Torsion generator: |
\( \frac{556726623741}{33110428640757650000} a^{17} + \frac{169373875893}{8277607160189412500} a^{16} + \frac{9126153725333}{33110428640757650000} a^{15} - \frac{2832238114767}{3311042864075765000} a^{14} + \frac{17941120101159}{6622085728151530000} a^{13} - \frac{26633520910013}{827760716018941250} a^{12} + \frac{71045472587049}{1324417145630306000} a^{11} - \frac{153905939262891}{331104286407576500} a^{10} + \frac{2513087454028559}{1324417145630306000} a^{9} - \frac{332586988936569}{132441714563030600} a^{8} + \frac{797127193602321}{20375648394312400} a^{7} - \frac{222974844241791}{66220857281515300} a^{6} + \frac{15453082092627603}{52976685825212240} a^{5} - \frac{29842023760511769}{26488342912606120} a^{4} + \frac{5295646972201137}{3784048987515160} a^{3} - \frac{167966664470154}{94601224687879} a^{2} + \frac{54986402946558}{13514460669697} a - \frac{54970537621502}{13514460669697} \)
(order $14$)
|
| |
| Fundamental units: |
$\frac{466389795411}{66\cdots 00}a^{17}+\frac{437489204979}{33\cdots 00}a^{16}+\frac{8274975166417}{66\cdots 00}a^{15}-\frac{434000665701}{16\cdots 00}a^{14}+\frac{12641575741791}{13\cdots 00}a^{13}-\frac{83875897456131}{66\cdots 00}a^{12}+\frac{6688573645977}{52\cdots 00}a^{11}-\frac{18643538119509}{10\cdots 00}a^{10}+\frac{16\cdots 91}{26\cdots 00}a^{9}-\frac{34868676220821}{66\cdots 00}a^{8}+\frac{330202833098157}{21\cdots 96}a^{7}+\frac{30\cdots 73}{26\cdots 00}a^{6}+\frac{26\cdots 63}{21\cdots 96}a^{5}-\frac{23\cdots 83}{66\cdots 30}a^{4}+\frac{10\cdots 91}{37\cdots 60}a^{3}-\frac{152775441448839}{378404898751516}a^{2}+\frac{7552160415747}{27028921339394}a-\frac{613108347097}{13514460669697}$, $\frac{451858817187}{33\cdots 00}a^{17}+\frac{443992029069}{16\cdots 00}a^{16}+\frac{8205266069449}{33\cdots 00}a^{15}-\frac{32368117221}{63\cdots 50}a^{14}+\frac{12336817597359}{66\cdots 00}a^{13}-\frac{82761748866451}{33\cdots 00}a^{12}+\frac{33115037600493}{13\cdots 00}a^{11}-\frac{241825113477729}{66\cdots 00}a^{10}+\frac{16\cdots 87}{13\cdots 00}a^{9}-\frac{37743822544437}{33\cdots 50}a^{8}+\frac{82\cdots 69}{26\cdots 00}a^{7}+\frac{27\cdots 97}{13\cdots 00}a^{6}+\frac{13\cdots 51}{52\cdots 40}a^{5}-\frac{23\cdots 23}{33\cdots 65}a^{4}+\frac{11\cdots 39}{18\cdots 80}a^{3}-\frac{68598883755801}{54057842678788}a^{2}+\frac{63173750227317}{27028921339394}a-\frac{15112156439859}{13514460669697}$, $\frac{242220199521}{33\cdots 00}a^{17}-\frac{49074753841}{20\cdots 25}a^{16}+\frac{1739626576841}{33\cdots 00}a^{15}-\frac{2770684988473}{33\cdots 00}a^{14}+\frac{1233894803487}{50\cdots 00}a^{13}-\frac{27120836349493}{16\cdots 00}a^{12}+\frac{20057411779889}{26\cdots 00}a^{11}-\frac{7841757082857}{33\cdots 50}a^{10}+\frac{19\cdots 63}{13\cdots 00}a^{9}-\frac{486566724483601}{13\cdots 00}a^{8}+\frac{43\cdots 77}{26\cdots 00}a^{7}-\frac{41\cdots 13}{66\cdots 00}a^{6}+\frac{30\cdots 39}{52\cdots 40}a^{5}-\frac{22\cdots 53}{26\cdots 20}a^{4}+\frac{88\cdots 27}{37\cdots 60}a^{3}-\frac{19449496777579}{27028921339394}a^{2}-\frac{58791473140723}{27028921339394}a+\frac{15552938730128}{13514460669697}$, $\frac{191352780559}{66\cdots 00}a^{17}-\frac{276711300941}{33\cdots 00}a^{16}+\frac{217356130977}{26\cdots 00}a^{15}-\frac{39254766157}{12\cdots 00}a^{14}+\frac{4967947512667}{26\cdots 00}a^{13}-\frac{66175831501683}{66\cdots 00}a^{12}+\frac{106350303845477}{26\cdots 00}a^{11}-\frac{290259834811201}{13\cdots 00}a^{10}+\frac{22\cdots 51}{26\cdots 00}a^{9}-\frac{203956575907263}{66\cdots 00}a^{8}+\frac{15\cdots 61}{10\cdots 80}a^{7}-\frac{19\cdots 31}{52\cdots 40}a^{6}+\frac{17\cdots 39}{10\cdots 80}a^{5}-\frac{282394591472135}{662208572815153}a^{4}+\frac{824644996424707}{473006123439395}a^{3}-\frac{921589965602707}{189202449375758}a^{2}+\frac{94150964536319}{13514460669697}a-\frac{57228025408446}{13514460669697}$, $\frac{105259054007}{66\cdots 00}a^{17}+\frac{1148697009923}{41\cdots 50}a^{16}+\frac{11087667400931}{41\cdots 50}a^{15}-\frac{2865489871862}{41\cdots 25}a^{14}+\frac{8353051587576}{41\cdots 25}a^{13}-\frac{242367107236909}{82\cdots 50}a^{12}+\frac{56117902413059}{16\cdots 50}a^{11}-\frac{13\cdots 53}{33\cdots 00}a^{10}+\frac{401794113030743}{25\cdots 00}a^{9}-\frac{217829704385066}{16\cdots 25}a^{8}+\frac{23\cdots 11}{66\cdots 30}a^{7}+\frac{53\cdots 23}{33\cdots 50}a^{6}+\frac{87\cdots 69}{33\cdots 65}a^{5}-\frac{63\cdots 87}{66\cdots 30}a^{4}+\frac{23\cdots 41}{37\cdots 60}a^{3}-\frac{45\cdots 83}{378404898751516}a^{2}+\frac{831637295041079}{27028921339394}a-\frac{15811607657377}{1039573897669}$, $\frac{681852870893}{82\cdots 00}a^{17}+\frac{7136645693721}{33\cdots 00}a^{16}+\frac{1290673585667}{82\cdots 50}a^{15}-\frac{14719783678781}{66\cdots 00}a^{14}+\frac{26805000235659}{33\cdots 00}a^{13}-\frac{38005153959127}{26\cdots 00}a^{12}+\frac{14975188762621}{33\cdots 00}a^{11}-\frac{536699396103953}{26\cdots 00}a^{10}+\frac{20\cdots 67}{33\cdots 00}a^{9}-\frac{6608136331835}{10\cdots 48}a^{8}+\frac{24\cdots 49}{13\cdots 00}a^{7}+\frac{65\cdots 99}{26\cdots 00}a^{6}+\frac{10\cdots 51}{66\cdots 30}a^{5}-\frac{19\cdots 71}{52\cdots 40}a^{4}-\frac{270396846360223}{756809797503032}a^{3}-\frac{524202547589900}{94601224687879}a^{2}+\frac{144478530412482}{13514460669697}a+\frac{36783472084848}{13514460669697}$, $\frac{25556485706097}{66\cdots 00}a^{17}-\frac{18365050285191}{12\cdots 00}a^{16}+\frac{33\cdots 63}{33\cdots 00}a^{15}-\frac{213276945593027}{82\cdots 50}a^{14}+\frac{78\cdots 01}{66\cdots 00}a^{13}-\frac{24\cdots 37}{33\cdots 00}a^{12}+\frac{22\cdots 23}{13\cdots 00}a^{11}-\frac{65\cdots 67}{66\cdots 00}a^{10}+\frac{34\cdots 37}{13\cdots 00}a^{9}-\frac{24\cdots 54}{16\cdots 25}a^{8}+\frac{87\cdots 87}{26\cdots 00}a^{7}+\frac{69\cdots 91}{13\cdots 00}a^{6}-\frac{15\cdots 31}{52\cdots 40}a^{5}+\frac{16\cdots 27}{33\cdots 65}a^{4}-\frac{10\cdots 91}{145540345673660}a^{3}+\frac{26\cdots 63}{189202449375758}a^{2}-\frac{49\cdots 89}{27028921339394}a+\frac{12\cdots 44}{13514460669697}$, $\frac{51162521514207}{16\cdots 00}a^{17}-\frac{121173612699351}{82\cdots 00}a^{16}+\frac{12\cdots 89}{16\cdots 00}a^{15}-\frac{70258376998213}{41\cdots 25}a^{14}+\frac{22\cdots 71}{33\cdots 00}a^{13}-\frac{78\cdots 01}{16\cdots 00}a^{12}+\frac{47\cdots 89}{66\cdots 00}a^{11}-\frac{15\cdots 07}{33\cdots 00}a^{10}+\frac{59\cdots 31}{66\cdots 00}a^{9}+\frac{35\cdots 67}{33\cdots 50}a^{8}-\frac{20\cdots 59}{52\cdots 24}a^{7}+\frac{67\cdots 13}{66\cdots 00}a^{6}-\frac{30\cdots 01}{52\cdots 24}a^{5}+\frac{38\cdots 62}{34134462516245}a^{4}-\frac{12\cdots 69}{946012246878790}a^{3}+\frac{21\cdots 29}{94601224687879}a^{2}-\frac{97\cdots 65}{27028921339394}a+\frac{31\cdots 64}{13514460669697}$
|
| |
| Regulator: | \( 294941269.205 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 294941269.205 \cdot 27}{14\cdot\sqrt{327356346842831533869771240234375}}\cr\approx \mathstrut & 0.479821501834 \end{aligned}\] (assuming GRH)
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.14175.1 x3, \(\Q(\zeta_{7})^+\), 6.0.1406514375.2, \(\Q(\zeta_{7})\), 6.0.68919204375.2 x2, 9.3.6838508054109375.21 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.68919204375.2 |
| Degree 9 sibling: | 9.3.6838508054109375.21 |
| Minimal sibling: | 6.0.68919204375.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{6}$ | R | R | R | ${\href{/padicField/11.3.0.1}{3} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{9}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}$ | ${\href{/padicField/19.6.0.1}{6} }^{3}$ | ${\href{/padicField/23.3.0.1}{3} }^{6}$ | ${\href{/padicField/29.3.0.1}{3} }^{6}$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.3.0.1}{3} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{9}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{3}$ | ${\href{/padicField/53.3.0.1}{3} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.6.3.24a1.1 | $x^{18} + 6 x^{16} + 15 x^{14} + 6 x^{13} + 29 x^{12} + 24 x^{11} + 51 x^{10} + 36 x^{9} + 72 x^{8} + 60 x^{7} + 85 x^{6} + 78 x^{5} + 69 x^{4} + 44 x^{3} + 60 x^{2} + 48 x + 23$ | $3$ | $6$ | $24$ | $S_3 \times C_3$ | not computed |
|
\(5\)
| 5.6.3.12a1.2 | $x^{18} + 3 x^{16} + 12 x^{15} + 6 x^{14} + 24 x^{13} + 61 x^{12} + 36 x^{11} + 66 x^{10} + 136 x^{9} + 69 x^{8} + 60 x^{7} + 121 x^{6} + 48 x^{5} + 18 x^{4} + 48 x^{3} + 12 x^{2} + 13$ | $3$ | $6$ | $12$ | $S_3 \times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(7\)
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ | |
| 7.1.6.5a1.1 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $$[\ ]_{6}$$ |