Properties

Label 18.0.307...008.1
Degree $18$
Signature $[0, 9]$
Discriminant $-3.079\times 10^{42}$
Root discriminant \(229.33\)
Ramified primes $2,3,13$
Class number $2804733$ (GRH)
Class group [3, 934911] (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707)
 
gp: K = bnfinit(y^18 - 216*y^16 + 20151*y^14 - 1038600*y^12 + 31811859*y^10 - 83486*y^9 - 580300056*y^8 + 15778854*y^7 + 6024891594*y^6 - 833273766*y^5 - 31134339360*y^4 + 14545097892*y^3 + 74969385273*y^2 - 62653320990*y + 334789624707, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707)
 

\( x^{18} - 216 x^{16} + 20151 x^{14} - 1038600 x^{12} + 31811859 x^{10} - 83486 x^{9} + \cdots + 334789624707 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-3079394418562350896973143551074069022507008\) \(\medspace = -\,2^{27}\cdot 3^{44}\cdot 13^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(229.33\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{22/9}13^{2/3}\approx 229.3349766307829$
Ramified primes:   \(2\), \(3\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-2}) \)
$\card{ \Gal(K/\Q) }$:  $18$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2808=2^{3}\cdot 3^{3}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{2808}(1,·)$, $\chi_{2808}(211,·)$, $\chi_{2808}(2785,·)$, $\chi_{2808}(2635,·)$, $\chi_{2808}(913,·)$, $\chi_{2808}(1147,·)$, $\chi_{2808}(1699,·)$, $\chi_{2808}(1849,·)$, $\chi_{2808}(2401,·)$, $\chi_{2808}(2083,·)$, $\chi_{2808}(529,·)$, $\chi_{2808}(937,·)$, $\chi_{2808}(235,·)$, $\chi_{2808}(2107,·)$, $\chi_{2808}(1171,·)$, $\chi_{2808}(1465,·)$, $\chi_{2808}(763,·)$, $\chi_{2808}(1873,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13}a^{6}+\frac{6}{13}a^{4}-\frac{1}{13}a^{2}-\frac{5}{13}$, $\frac{1}{13}a^{7}+\frac{6}{13}a^{5}-\frac{1}{13}a^{3}-\frac{5}{13}a$, $\frac{1}{13}a^{8}+\frac{2}{13}a^{4}+\frac{1}{13}a^{2}+\frac{4}{13}$, $\frac{1}{13}a^{9}+\frac{2}{13}a^{5}+\frac{1}{13}a^{3}+\frac{4}{13}a$, $\frac{1}{689}a^{10}+\frac{23}{689}a^{9}-\frac{1}{689}a^{8}-\frac{16}{689}a^{7}+\frac{184}{689}a^{5}+\frac{5}{53}a^{4}-\frac{12}{53}a^{3}+\frac{304}{689}a^{2}+\frac{133}{689}a+\frac{175}{689}$, $\frac{1}{689}a^{11}+\frac{7}{689}a^{8}-\frac{3}{689}a^{7}+\frac{25}{689}a^{6}+\frac{179}{689}a^{5}+\frac{151}{689}a^{4}-\frac{30}{689}a^{3}+\frac{190}{689}a^{2}-\frac{287}{689}a+\frac{215}{689}$, $\frac{1}{170183}a^{12}-\frac{1}{170183}a^{10}-\frac{5}{689}a^{9}-\frac{2228}{170183}a^{8}-\frac{17}{689}a^{7}+\frac{6062}{170183}a^{6}-\frac{60}{689}a^{5}-\frac{69843}{170183}a^{4}+\frac{181}{689}a^{3}+\frac{78114}{170183}a^{2}-\frac{23}{53}a+\frac{47631}{170183}$, $\frac{1}{170183}a^{13}-\frac{1}{170183}a^{11}-\frac{5}{170183}a^{9}-\frac{22}{689}a^{8}-\frac{607}{170183}a^{7}-\frac{7}{689}a^{6}+\frac{13396}{170183}a^{5}+\frac{135}{689}a^{4}+\frac{16364}{170183}a^{3}-\frac{210}{689}a^{2}+\frac{41703}{170183}a-\frac{79}{689}$, $\frac{1}{170183}a^{14}-\frac{6}{170183}a^{10}+\frac{2}{53}a^{9}-\frac{2835}{170183}a^{8}-\frac{24}{689}a^{7}+\frac{6367}{170183}a^{6}+\frac{181}{689}a^{5}+\frac{38158}{170183}a^{4}+\frac{24}{689}a^{3}-\frac{37275}{170183}a^{2}-\frac{166}{689}a-\frac{57097}{170183}$, $\frac{1}{170183}a^{15}-\frac{6}{170183}a^{11}-\frac{6540}{170183}a^{9}+\frac{2}{689}a^{8}+\frac{4391}{170183}a^{7}+\frac{22}{689}a^{6}+\frac{47791}{170183}a^{5}+\frac{136}{689}a^{4}+\frac{22005}{170183}a^{3}-\frac{332}{689}a^{2}+\frac{18238}{170183}a-\frac{310}{689}$, $\frac{1}{170183}a^{16}+\frac{123}{170183}a^{10}+\frac{10}{689}a^{9}-\frac{2555}{170183}a^{8}+\frac{18}{689}a^{7}+\frac{5617}{170183}a^{6}-\frac{132}{689}a^{5}-\frac{68296}{170183}a^{4}+\frac{252}{689}a^{3}+\frac{53190}{170183}a^{2}-\frac{50}{689}a+\frac{25942}{170183}$, $\frac{1}{16\!\cdots\!47}a^{17}+\frac{20\!\cdots\!74}{16\!\cdots\!47}a^{16}-\frac{33\!\cdots\!26}{16\!\cdots\!47}a^{15}-\frac{26\!\cdots\!48}{16\!\cdots\!47}a^{14}+\frac{87\!\cdots\!67}{16\!\cdots\!47}a^{13}+\frac{99\!\cdots\!27}{16\!\cdots\!47}a^{12}-\frac{31\!\cdots\!71}{12\!\cdots\!19}a^{11}-\frac{85\!\cdots\!74}{16\!\cdots\!47}a^{10}-\frac{39\!\cdots\!30}{12\!\cdots\!19}a^{9}-\frac{25\!\cdots\!75}{16\!\cdots\!47}a^{8}-\frac{13\!\cdots\!32}{16\!\cdots\!47}a^{7}-\frac{14\!\cdots\!74}{16\!\cdots\!47}a^{6}+\frac{53\!\cdots\!81}{16\!\cdots\!47}a^{5}+\frac{37\!\cdots\!51}{16\!\cdots\!47}a^{4}-\frac{61\!\cdots\!19}{16\!\cdots\!47}a^{3}+\frac{76\!\cdots\!68}{16\!\cdots\!47}a^{2}-\frac{15\!\cdots\!07}{16\!\cdots\!47}a+\frac{92\!\cdots\!37}{16\!\cdots\!47}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{934911}$, which has order $2804733$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{43\!\cdots\!36}{28\!\cdots\!47}a^{17}-\frac{23\!\cdots\!56}{47\!\cdots\!43}a^{16}-\frac{12\!\cdots\!06}{36\!\cdots\!11}a^{15}+\frac{18\!\cdots\!16}{47\!\cdots\!43}a^{14}+\frac{12\!\cdots\!78}{36\!\cdots\!11}a^{13}-\frac{15\!\cdots\!40}{24\!\cdots\!97}a^{12}-\frac{49\!\cdots\!76}{28\!\cdots\!47}a^{11}+\frac{21\!\cdots\!64}{47\!\cdots\!43}a^{10}+\frac{15\!\cdots\!86}{28\!\cdots\!47}a^{9}-\frac{85\!\cdots\!16}{47\!\cdots\!43}a^{8}-\frac{28\!\cdots\!04}{28\!\cdots\!47}a^{7}+\frac{18\!\cdots\!71}{47\!\cdots\!43}a^{6}+\frac{28\!\cdots\!88}{28\!\cdots\!47}a^{5}-\frac{24\!\cdots\!56}{47\!\cdots\!43}a^{4}-\frac{12\!\cdots\!22}{36\!\cdots\!11}a^{3}+\frac{16\!\cdots\!51}{47\!\cdots\!43}a^{2}-\frac{11\!\cdots\!24}{36\!\cdots\!11}a-\frac{30\!\cdots\!92}{47\!\cdots\!43}$, $\frac{68\!\cdots\!76}{28\!\cdots\!47}a^{17}+\frac{45\!\cdots\!44}{47\!\cdots\!43}a^{16}-\frac{10\!\cdots\!74}{19\!\cdots\!69}a^{15}-\frac{27\!\cdots\!16}{47\!\cdots\!43}a^{14}+\frac{18\!\cdots\!46}{36\!\cdots\!11}a^{13}+\frac{42\!\cdots\!75}{47\!\cdots\!43}a^{12}-\frac{75\!\cdots\!76}{28\!\cdots\!47}a^{11}-\frac{30\!\cdots\!80}{47\!\cdots\!43}a^{10}+\frac{23\!\cdots\!98}{28\!\cdots\!47}a^{9}+\frac{11\!\cdots\!98}{47\!\cdots\!43}a^{8}-\frac{42\!\cdots\!56}{28\!\cdots\!47}a^{7}-\frac{26\!\cdots\!63}{47\!\cdots\!43}a^{6}+\frac{41\!\cdots\!00}{28\!\cdots\!47}a^{5}+\frac{16\!\cdots\!73}{24\!\cdots\!97}a^{4}-\frac{24\!\cdots\!06}{36\!\cdots\!11}a^{3}-\frac{19\!\cdots\!83}{47\!\cdots\!43}a^{2}+\frac{19\!\cdots\!00}{36\!\cdots\!11}a+\frac{78\!\cdots\!41}{47\!\cdots\!43}$, $\frac{23\!\cdots\!94}{16\!\cdots\!47}a^{17}+\frac{94\!\cdots\!52}{16\!\cdots\!47}a^{16}-\frac{48\!\cdots\!74}{16\!\cdots\!47}a^{15}-\frac{82\!\cdots\!43}{30\!\cdots\!99}a^{14}+\frac{41\!\cdots\!76}{16\!\cdots\!47}a^{13}+\frac{58\!\cdots\!27}{16\!\cdots\!47}a^{12}-\frac{18\!\cdots\!32}{16\!\cdots\!47}a^{11}-\frac{35\!\cdots\!58}{16\!\cdots\!47}a^{10}+\frac{42\!\cdots\!58}{16\!\cdots\!47}a^{9}+\frac{80\!\cdots\!74}{12\!\cdots\!19}a^{8}-\frac{39\!\cdots\!10}{16\!\cdots\!47}a^{7}-\frac{13\!\cdots\!69}{16\!\cdots\!47}a^{6}-\frac{30\!\cdots\!00}{16\!\cdots\!47}a^{5}+\frac{15\!\cdots\!94}{12\!\cdots\!19}a^{4}+\frac{18\!\cdots\!80}{16\!\cdots\!47}a^{3}+\frac{78\!\cdots\!59}{16\!\cdots\!47}a^{2}+\frac{62\!\cdots\!92}{12\!\cdots\!19}a-\frac{70\!\cdots\!47}{16\!\cdots\!47}$, $\frac{42\!\cdots\!24}{16\!\cdots\!47}a^{17}-\frac{89\!\cdots\!75}{16\!\cdots\!47}a^{16}-\frac{90\!\cdots\!42}{16\!\cdots\!47}a^{15}+\frac{20\!\cdots\!35}{16\!\cdots\!47}a^{14}+\frac{81\!\cdots\!16}{16\!\cdots\!47}a^{13}-\frac{19\!\cdots\!22}{16\!\cdots\!47}a^{12}-\frac{39\!\cdots\!28}{16\!\cdots\!47}a^{11}+\frac{95\!\cdots\!83}{16\!\cdots\!47}a^{10}+\frac{57\!\cdots\!46}{84\!\cdots\!13}a^{9}-\frac{25\!\cdots\!93}{16\!\cdots\!47}a^{8}-\frac{16\!\cdots\!62}{16\!\cdots\!47}a^{7}+\frac{34\!\cdots\!31}{16\!\cdots\!47}a^{6}+\frac{12\!\cdots\!20}{16\!\cdots\!47}a^{5}-\frac{19\!\cdots\!94}{16\!\cdots\!47}a^{4}-\frac{73\!\cdots\!90}{30\!\cdots\!99}a^{3}+\frac{65\!\cdots\!31}{16\!\cdots\!47}a^{2}-\frac{14\!\cdots\!82}{12\!\cdots\!19}a+\frac{94\!\cdots\!35}{16\!\cdots\!47}$, $\frac{40\!\cdots\!82}{16\!\cdots\!47}a^{17}-\frac{27\!\cdots\!01}{16\!\cdots\!47}a^{16}-\frac{78\!\cdots\!52}{16\!\cdots\!47}a^{15}+\frac{58\!\cdots\!33}{16\!\cdots\!47}a^{14}+\frac{57\!\cdots\!22}{16\!\cdots\!47}a^{13}-\frac{53\!\cdots\!34}{16\!\cdots\!47}a^{12}-\frac{16\!\cdots\!90}{16\!\cdots\!47}a^{11}+\frac{27\!\cdots\!48}{16\!\cdots\!47}a^{10}-\frac{13\!\cdots\!26}{16\!\cdots\!47}a^{9}-\frac{84\!\cdots\!51}{16\!\cdots\!47}a^{8}+\frac{18\!\cdots\!48}{16\!\cdots\!47}a^{7}+\frac{15\!\cdots\!80}{16\!\cdots\!47}a^{6}-\frac{36\!\cdots\!48}{16\!\cdots\!47}a^{5}-\frac{88\!\cdots\!13}{84\!\cdots\!13}a^{4}+\frac{19\!\cdots\!76}{16\!\cdots\!47}a^{3}+\frac{47\!\cdots\!19}{84\!\cdots\!13}a^{2}-\frac{51\!\cdots\!96}{12\!\cdots\!19}a+\frac{73\!\cdots\!65}{16\!\cdots\!47}$, $\frac{49\!\cdots\!56}{16\!\cdots\!47}a^{17}+\frac{33\!\cdots\!15}{16\!\cdots\!47}a^{16}-\frac{11\!\cdots\!44}{16\!\cdots\!47}a^{15}-\frac{37\!\cdots\!60}{65\!\cdots\!01}a^{14}+\frac{10\!\cdots\!72}{16\!\cdots\!47}a^{13}+\frac{10\!\cdots\!63}{16\!\cdots\!47}a^{12}-\frac{60\!\cdots\!26}{16\!\cdots\!47}a^{11}-\frac{67\!\cdots\!28}{16\!\cdots\!47}a^{10}+\frac{19\!\cdots\!70}{16\!\cdots\!47}a^{9}+\frac{25\!\cdots\!93}{16\!\cdots\!47}a^{8}-\frac{39\!\cdots\!90}{16\!\cdots\!47}a^{7}-\frac{59\!\cdots\!18}{16\!\cdots\!47}a^{6}+\frac{22\!\cdots\!40}{84\!\cdots\!13}a^{5}+\frac{76\!\cdots\!88}{16\!\cdots\!47}a^{4}-\frac{18\!\cdots\!38}{16\!\cdots\!47}a^{3}-\frac{43\!\cdots\!65}{16\!\cdots\!47}a^{2}-\frac{19\!\cdots\!80}{12\!\cdots\!19}a-\frac{86\!\cdots\!07}{16\!\cdots\!47}$, $\frac{29\!\cdots\!84}{16\!\cdots\!47}a^{17}+\frac{14\!\cdots\!57}{12\!\cdots\!19}a^{16}-\frac{33\!\cdots\!90}{84\!\cdots\!13}a^{15}-\frac{42\!\cdots\!23}{16\!\cdots\!47}a^{14}+\frac{58\!\cdots\!00}{16\!\cdots\!47}a^{13}+\frac{39\!\cdots\!49}{16\!\cdots\!47}a^{12}-\frac{16\!\cdots\!10}{84\!\cdots\!13}a^{11}-\frac{21\!\cdots\!43}{16\!\cdots\!47}a^{10}+\frac{94\!\cdots\!36}{16\!\cdots\!47}a^{9}+\frac{66\!\cdots\!09}{16\!\cdots\!47}a^{8}-\frac{17\!\cdots\!52}{16\!\cdots\!47}a^{7}-\frac{12\!\cdots\!81}{16\!\cdots\!47}a^{6}+\frac{18\!\cdots\!92}{16\!\cdots\!47}a^{5}+\frac{13\!\cdots\!49}{16\!\cdots\!47}a^{4}-\frac{92\!\cdots\!96}{16\!\cdots\!47}a^{3}-\frac{81\!\cdots\!34}{16\!\cdots\!47}a^{2}+\frac{18\!\cdots\!10}{12\!\cdots\!19}a+\frac{30\!\cdots\!49}{16\!\cdots\!47}$, $\frac{79\!\cdots\!50}{16\!\cdots\!47}a^{17}+\frac{96\!\cdots\!60}{16\!\cdots\!47}a^{16}-\frac{12\!\cdots\!20}{16\!\cdots\!47}a^{15}-\frac{89\!\cdots\!77}{84\!\cdots\!13}a^{14}+\frac{74\!\cdots\!98}{16\!\cdots\!47}a^{13}+\frac{12\!\cdots\!75}{16\!\cdots\!47}a^{12}-\frac{21\!\cdots\!84}{16\!\cdots\!47}a^{11}-\frac{41\!\cdots\!26}{16\!\cdots\!47}a^{10}+\frac{30\!\cdots\!88}{16\!\cdots\!47}a^{9}+\frac{56\!\cdots\!41}{16\!\cdots\!47}a^{8}-\frac{32\!\cdots\!38}{16\!\cdots\!47}a^{7}+\frac{37\!\cdots\!64}{16\!\cdots\!47}a^{6}+\frac{48\!\cdots\!84}{16\!\cdots\!47}a^{5}-\frac{38\!\cdots\!30}{30\!\cdots\!99}a^{4}-\frac{33\!\cdots\!98}{16\!\cdots\!47}a^{3}+\frac{17\!\cdots\!90}{16\!\cdots\!47}a^{2}-\frac{72\!\cdots\!40}{12\!\cdots\!19}a-\frac{36\!\cdots\!07}{84\!\cdots\!13}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 54961806.57802202 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 54961806.57802202 \cdot 2804733}{2\cdot\sqrt{3079394418562350896973143551074069022507008}}\cr\approx \mathstrut & 0.670360913649410 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 216*x^16 + 20151*x^14 - 1038600*x^12 + 31811859*x^10 - 83486*x^9 - 580300056*x^8 + 15778854*x^7 + 6024891594*x^6 - 833273766*x^5 - 31134339360*x^4 + 14545097892*x^3 + 74969385273*x^2 - 62653320990*x + 334789624707);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{18}$ (as 18T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\zeta_{9})^+\), 6.0.3359232.1, 9.9.151470380950257681.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $18$ $18$ ${\href{/padicField/11.9.0.1}{9} }^{2}$ R ${\href{/padicField/17.3.0.1}{3} }^{6}$ ${\href{/padicField/19.1.0.1}{1} }^{18}$ $18$ $18$ $18$ ${\href{/padicField/37.2.0.1}{2} }^{9}$ ${\href{/padicField/41.9.0.1}{9} }^{2}$ ${\href{/padicField/43.9.0.1}{9} }^{2}$ $18$ ${\href{/padicField/53.2.0.1}{2} }^{9}$ ${\href{/padicField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.27.117$x^{18} + 16 x^{17} + 178 x^{16} + 2960 x^{15} + 45360 x^{14} + 447008 x^{13} + 3255456 x^{12} + 17891904 x^{11} + 60260960 x^{10} + 85138048 x^{9} - 288700480 x^{8} - 3555798272 x^{7} - 16235478272 x^{6} - 53744921088 x^{5} - 137665523200 x^{4} - 262308385792 x^{3} - 401534975744 x^{2} - 426755266560 x - 200836357632$$2$$9$$27$$C_{18}$$[3]^{9}$
\(3\) Copy content Toggle raw display 3.9.22.6$x^{9} + 18 x^{8} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 57$$9$$1$$22$$C_9$$[2, 3]$
3.9.22.6$x^{9} + 18 x^{8} + 9 x^{7} + 6 x^{6} + 18 x^{5} + 57$$9$$1$$22$$C_9$$[2, 3]$
\(13\) Copy content Toggle raw display 13.18.12.2$x^{18} - 21970 x^{9} + 314171 x^{6} - 4084223 x^{3} + 9653618$$3$$6$$12$$C_{18}$$[\ ]_{3}^{6}$