Properties

Label 18.0.14768200374...0000.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{18}\cdot 5^{9}\cdot 19^{16}$
Root discriminant $61.26$
Ramified primes $2, 5, 19$
Class number $8582$ (GRH)
Class group $[8582]$ (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29134601, -6474360, 23461605, -4814010, 9429355, -1778572, 2471666, -424984, 465597, -72082, 65641, -8936, 6983, -814, 552, -50, 30, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 2*x^17 + 30*x^16 - 50*x^15 + 552*x^14 - 814*x^13 + 6983*x^12 - 8936*x^11 + 65641*x^10 - 72082*x^9 + 465597*x^8 - 424984*x^7 + 2471666*x^6 - 1778572*x^5 + 9429355*x^4 - 4814010*x^3 + 23461605*x^2 - 6474360*x + 29134601)
 
gp: K = bnfinit(x^18 - 2*x^17 + 30*x^16 - 50*x^15 + 552*x^14 - 814*x^13 + 6983*x^12 - 8936*x^11 + 65641*x^10 - 72082*x^9 + 465597*x^8 - 424984*x^7 + 2471666*x^6 - 1778572*x^5 + 9429355*x^4 - 4814010*x^3 + 23461605*x^2 - 6474360*x + 29134601, 1)
 

Normalized defining polynomial

\( x^{18} - 2 x^{17} + 30 x^{16} - 50 x^{15} + 552 x^{14} - 814 x^{13} + 6983 x^{12} - 8936 x^{11} + 65641 x^{10} - 72082 x^{9} + 465597 x^{8} - 424984 x^{7} + 2471666 x^{6} - 1778572 x^{5} + 9429355 x^{4} - 4814010 x^{3} + 23461605 x^{2} - 6474360 x + 29134601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-147682003746622037852672000000000=-\,2^{18}\cdot 5^{9}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.26$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(380=2^{2}\cdot 5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{380}(1,·)$, $\chi_{380}(321,·)$, $\chi_{380}(201,·)$, $\chi_{380}(139,·)$, $\chi_{380}(81,·)$, $\chi_{380}(339,·)$, $\chi_{380}(199,·)$, $\chi_{380}(159,·)$, $\chi_{380}(161,·)$, $\chi_{380}(99,·)$, $\chi_{380}(101,·)$, $\chi_{380}(39,·)$, $\chi_{380}(359,·)$, $\chi_{380}(301,·)$, $\chi_{380}(239,·)$, $\chi_{380}(119,·)$, $\chi_{380}(121,·)$, $\chi_{380}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{40767810384675598780004268728504409289601071327961} a^{17} - \frac{3848451596101061148825111565909473197318963253616}{40767810384675598780004268728504409289601071327961} a^{16} + \frac{13557930904639962507174207932418999481868451507479}{40767810384675598780004268728504409289601071327961} a^{15} + \frac{16436809795134872185187780238215625594310895499149}{40767810384675598780004268728504409289601071327961} a^{14} - \frac{7869639614170206274322865412354223077780125795126}{40767810384675598780004268728504409289601071327961} a^{13} + \frac{6272362574401288614352247041677687909516486438823}{40767810384675598780004268728504409289601071327961} a^{12} - \frac{17619189252078691904786937208638041913587448565324}{40767810384675598780004268728504409289601071327961} a^{11} - \frac{14632612976790913766928580500511381196484569182550}{40767810384675598780004268728504409289601071327961} a^{10} + \frac{14694412390809046053097235648806267474041114920454}{40767810384675598780004268728504409289601071327961} a^{9} + \frac{3948708257129156478363869554893220567852186058474}{40767810384675598780004268728504409289601071327961} a^{8} - \frac{10485905972673083477753027598181755191146145803399}{40767810384675598780004268728504409289601071327961} a^{7} - \frac{2355443290433853919772017086773062515044336727254}{40767810384675598780004268728504409289601071327961} a^{6} - \frac{5543430930740439444296114881392291404028537943345}{40767810384675598780004268728504409289601071327961} a^{5} - \frac{15820538568165453349202757714394993662034555086327}{40767810384675598780004268728504409289601071327961} a^{4} + \frac{7207022808036547924267533370883873901416185738344}{40767810384675598780004268728504409289601071327961} a^{3} + \frac{6828617425866368328240288057414970644691301583106}{40767810384675598780004268728504409289601071327961} a^{2} + \frac{12294413269756412643332254030930538325542136246322}{40767810384675598780004268728504409289601071327961} a + \frac{16376598755394734163575235713842817685460411566929}{40767810384675598780004268728504409289601071327961}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8582}$, which has order $8582$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 22305.8950792 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{-5}) \), 3.3.361.1, 6.0.1042568000.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ $18$ $18$ R ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ $18$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
19Data not computed