Properties

Label 18.0.141...064.1
Degree $18$
Signature $[0, 9]$
Discriminant $-1.412\times 10^{29}$
Root discriminant \(41.63\)
Ramified primes $2,257,43237$
Class number $136$ (GRH)
Class group [2, 68] (GRH)
Galois group $D_6\wr S_3$ (as 18T556)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1)
 
gp: K = bnfinit(y^18 + 24*y^16 + 220*y^14 + 1010*y^12 + 2543*y^10 + 3581*y^8 + 2690*y^6 + 905*y^4 + 66*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1)
 

\( x^{18} + 24x^{16} + 220x^{14} + 1010x^{12} + 2543x^{10} + 3581x^{8} + 2690x^{6} + 905x^{4} + 66x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-141204899984457152700528984064\) \(\medspace = -\,2^{18}\cdot 257^{6}\cdot 43237^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(41.63\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{7/4}257^{1/2}43237^{1/2}\approx 11212.354761299932$
Ramified primes:   \(2\), \(257\), \(43237\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5111}a^{16}-\frac{1575}{5111}a^{14}-\frac{1078}{5111}a^{12}+\frac{2325}{5111}a^{10}+\frac{565}{5111}a^{8}-\frac{318}{5111}a^{6}+\frac{72}{5111}a^{4}-\frac{1781}{5111}a^{2}+\frac{1058}{5111}$, $\frac{1}{5111}a^{17}-\frac{1575}{5111}a^{15}-\frac{1078}{5111}a^{13}+\frac{2325}{5111}a^{11}+\frac{565}{5111}a^{9}-\frac{318}{5111}a^{7}+\frac{72}{5111}a^{5}-\frac{1781}{5111}a^{3}+\frac{1058}{5111}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{68}$, which has order $136$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{32858}{5111}a^{17}+\frac{748842}{5111}a^{15}+\frac{6320613}{5111}a^{13}+\frac{25489290}{5111}a^{11}+\frac{52292259}{5111}a^{9}+\frac{52666895}{5111}a^{7}+\frac{21087369}{5111}a^{5}+\frac{537507}{5111}a^{3}-\frac{72812}{5111}a$, $\frac{7674}{5111}a^{16}+\frac{174739}{5111}a^{14}+\frac{1474105}{5111}a^{12}+\frac{5953864}{5111}a^{10}+\frac{12324303}{5111}a^{8}+\frac{12836447}{5111}a^{6}+\frac{5862857}{5111}a^{4}+\frac{694516}{5111}a^{2}+\frac{18157}{5111}$, $\frac{3191}{5111}a^{17}+\frac{74953}{5111}a^{15}+\frac{664235}{5111}a^{13}+\frac{2895840}{5111}a^{11}+\frac{6745252}{5111}a^{9}+\frac{8455945}{5111}a^{7}+\frac{5310086}{5111}a^{5}+\frac{1288233}{5111}a^{3}+\frac{2818}{5111}a$, $\frac{19845}{5111}a^{16}+\frac{452769}{5111}a^{14}+\frac{3829875}{5111}a^{12}+\frac{15514513}{5111}a^{10}+\frac{32152192}{5111}a^{8}+\frac{33217764}{5111}a^{6}+\frac{14461890}{5111}a^{4}+\frac{1179261}{5111}a^{2}+\frac{15355}{5111}$, $\frac{9594}{5111}a^{17}+\frac{217339}{5111}a^{15}+\frac{1816737}{5111}a^{13}+\frac{7213267}{5111}a^{11}+\frac{14421081}{5111}a^{9}+\frac{13840963}{5111}a^{7}+\frac{4840900}{5111}a^{5}-\frac{261502}{5111}a^{3}-\frac{20438}{5111}a$, $\frac{12171}{5111}a^{16}+\frac{278030}{5111}a^{14}+\frac{2355770}{5111}a^{12}+\frac{9560649}{5111}a^{10}+\frac{19827889}{5111}a^{8}+\frac{20381317}{5111}a^{6}+\frac{8599033}{5111}a^{4}+\frac{484745}{5111}a^{2}-\frac{2802}{5111}$, $\frac{27358}{5111}a^{17}+\frac{630644}{5111}a^{15}+\frac{5426428}{5111}a^{13}+\frac{22617130}{5111}a^{11}+\frac{49235869}{5111}a^{9}+\frac{55770310}{5111}a^{7}+\frac{29947390}{5111}a^{5}+\frac{5758662}{5111}a^{3}+\frac{261832}{5111}a$, $\frac{6893}{5111}a^{16}+\frac{157730}{5111}a^{14}+\frac{1339822}{5111}a^{12}+\frac{5456677}{5111}a^{10}+\frac{11371938}{5111}a^{8}+\frac{11776389}{5111}a^{6}+\frac{5045086}{5111}a^{4}+\frac{317071}{5111}a^{2}-\frac{5714}{5111}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 95074.4744327 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 95074.4744327 \cdot 136}{2\cdot\sqrt{141204899984457152700528984064}}\cr\approx \mathstrut & 0.262583103800 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 24*x^16 + 220*x^14 + 1010*x^12 + 2543*x^10 + 3581*x^8 + 2690*x^6 + 905*x^4 + 66*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_6\wr S_3$ (as 18T556):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 10368
The 98 conjugacy class representatives for $D_6\wr S_3$
Character table for $D_6\wr S_3$

Intermediate fields

3.3.257.1, 6.0.4227136.1, 9.9.733930477541.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.9.0.1}{9} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.12.0.1}{12} }{,}\,{\href{/padicField/37.6.0.1}{6} }$ ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.4$x^{6} - 4 x^{5} + 14 x^{4} - 24 x^{3} + 100 x^{2} + 48 x + 88$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
2.12.12.23$x^{12} + 56 x^{10} - 152 x^{9} - 764 x^{8} + 2976 x^{7} - 960 x^{6} - 11008 x^{5} + 20336 x^{4} - 14976 x^{3} + 80768 x^{2} + 6016 x + 38848$$2$$6$$12$$C_2^2 \times A_4$$[2, 2, 2]^{6}$
\(257\) Copy content Toggle raw display $\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{257}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
Deg $4$$2$$2$$2$
\(43237\) Copy content Toggle raw display $\Q_{43237}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{43237}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$