Properties

Label 18T556
Order \(10368\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $556$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,2,9)(3,12,6,7)(4,11,5,8), (1,2)(3,6)(4,5)(13,14)(15,16)(17,18), (1,2)(3,4)(5,6), (13,15,18)(14,16,17), (1,14,10)(2,13,9)(3,18,8)(4,17,7)(5,15,12)(6,16,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$ x 3, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 9
96:  $V_4^2:S_3$, 12T48 x 3
192:  12T100 x 3
384:  12T139
1296:  $S_3\wr S_3$
2592:  18T394
5184:  18T483

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: $S_4\times C_2$

Degree 9: $S_3\wr S_3$

Low degree siblings

18T556 x 7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 98 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $10368=2^{7} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.