Properties

Label 18.0.120...096.1
Degree $18$
Signature $[0, 9]$
Discriminant $-1.207\times 10^{31}$
Root discriminant \(53.30\)
Ramified primes $2,37,16361$
Class number $2240$ (GRH)
Class group [4, 560] (GRH)
Galois group $S_4^3.D_6$ (as 18T837)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361)
 
gp: K = bnfinit(y^18 + 48*y^16 + 873*y^14 + 8175*y^12 + 43777*y^10 + 137970*y^8 + 250326*y^6 + 242159*y^4 + 106935*y^2 + 16361, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361)
 

\( x^{18} + 48 x^{16} + 873 x^{14} + 8175 x^{12} + 43777 x^{10} + 137970 x^{8} + 250326 x^{6} + \cdots + 16361 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-12065345096686615429034956292096\) \(\medspace = -\,2^{30}\cdot 37^{6}\cdot 16361^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(53.30\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(37\), \(16361\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-16361}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{256}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{15}a^{14}+\frac{1}{3}a^{12}-\frac{1}{5}a^{10}+\frac{4}{15}a^{8}+\frac{1}{5}a^{6}+\frac{2}{15}a^{4}+\frac{7}{15}a^{2}-\frac{4}{15}$, $\frac{1}{15}a^{15}+\frac{1}{3}a^{13}-\frac{1}{5}a^{11}+\frac{4}{15}a^{9}+\frac{1}{5}a^{7}+\frac{2}{15}a^{5}+\frac{7}{15}a^{3}-\frac{4}{15}a$, $\frac{1}{67768010415675}a^{16}+\frac{1009732885009}{67768010415675}a^{14}-\frac{14458417267328}{67768010415675}a^{12}+\frac{18361164407317}{67768010415675}a^{10}-\frac{12484710804661}{67768010415675}a^{8}+\frac{12058067964149}{67768010415675}a^{6}-\frac{217199827232}{13553602083135}a^{4}+\frac{19219104522574}{67768010415675}a^{2}+\frac{30388774912774}{67768010415675}$, $\frac{1}{67768010415675}a^{17}+\frac{1009732885009}{67768010415675}a^{15}-\frac{14458417267328}{67768010415675}a^{13}+\frac{18361164407317}{67768010415675}a^{11}-\frac{12484710804661}{67768010415675}a^{9}+\frac{12058067964149}{67768010415675}a^{7}-\frac{217199827232}{13553602083135}a^{5}+\frac{19219104522574}{67768010415675}a^{3}+\frac{30388774912774}{67768010415675}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{4}\times C_{560}$, which has order $2240$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $8$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{79070311784}{67768010415675}a^{16}+\frac{3635980474391}{67768010415675}a^{14}+\frac{61441576826948}{67768010415675}a^{12}+\frac{512257581840173}{67768010415675}a^{10}+\frac{22\!\cdots\!91}{67768010415675}a^{8}+\frac{54\!\cdots\!21}{67768010415675}a^{6}+\frac{12\!\cdots\!51}{13553602083135}a^{4}+\frac{28\!\cdots\!61}{67768010415675}a^{2}+\frac{341187448050101}{67768010415675}$, $\frac{94242087358}{67768010415675}a^{16}+\frac{4126667413957}{67768010415675}a^{14}+\frac{65101432428076}{67768010415675}a^{12}+\frac{505440039058906}{67768010415675}a^{10}+\frac{21\!\cdots\!27}{67768010415675}a^{8}+\frac{51\!\cdots\!22}{67768010415675}a^{6}+\frac{13\!\cdots\!58}{13553602083135}a^{4}+\frac{46\!\cdots\!12}{67768010415675}a^{2}+\frac{11\!\cdots\!27}{67768010415675}$, $\frac{158046191}{63040009689}a^{16}+\frac{7030486547}{63040009689}a^{14}+\frac{113572282286}{63040009689}a^{12}+\frac{906099927095}{63040009689}a^{10}+\frac{3930192713938}{63040009689}a^{8}+\frac{9361453411909}{63040009689}a^{6}+\frac{11553775530055}{63040009689}a^{4}+\frac{6373777051313}{63040009689}a^{2}+\frac{1110172541054}{63040009689}$, $\frac{230815554173}{67768010415675}a^{16}+\frac{10128743248802}{67768010415675}a^{14}+\frac{159662431397381}{67768010415675}a^{12}+\frac{12\!\cdots\!56}{67768010415675}a^{10}+\frac{49\!\cdots\!77}{67768010415675}a^{8}+\frac{10\!\cdots\!37}{67768010415675}a^{6}+\frac{22\!\cdots\!77}{13553602083135}a^{4}+\frac{49\!\cdots\!67}{67768010415675}a^{2}+\frac{694823389770347}{67768010415675}$, $\frac{30276447847}{22589336805225}a^{16}+\frac{1307264187878}{22589336805225}a^{14}+\frac{6738736292278}{7529778935075}a^{12}+\frac{153933279928984}{22589336805225}a^{10}+\frac{214970678448351}{7529778935075}a^{8}+\frac{15\!\cdots\!18}{22589336805225}a^{6}+\frac{410649419515958}{4517867361045}a^{4}+\frac{13\!\cdots\!38}{22589336805225}a^{2}+\frac{94694225953661}{7529778935075}$, $\frac{2204983284}{7529778935075}a^{16}+\frac{314417905393}{22589336805225}a^{14}+\frac{5581082702069}{22589336805225}a^{12}+\frac{16529581764878}{7529778935075}a^{10}+\frac{240650605237303}{22589336805225}a^{8}+\frac{212393634046116}{7529778935075}a^{6}+\frac{169756213639141}{4517867361045}a^{4}+\frac{474674668552723}{22589336805225}a^{2}+\frac{111147571356323}{22589336805225}$, $\frac{271898479933}{67768010415675}a^{16}+\frac{12091751322277}{67768010415675}a^{14}+\frac{195018583517026}{67768010415675}a^{12}+\frac{15\!\cdots\!71}{67768010415675}a^{10}+\frac{66\!\cdots\!32}{67768010415675}a^{8}+\frac{15\!\cdots\!07}{67768010415675}a^{6}+\frac{38\!\cdots\!86}{13553602083135}a^{4}+\frac{11\!\cdots\!52}{67768010415675}a^{2}+\frac{21\!\cdots\!72}{67768010415675}$, $\frac{75657567967}{67768010415675}a^{16}+\frac{3431105624068}{67768010415675}a^{14}+\frac{56988771029374}{67768010415675}a^{12}+\frac{468617382568219}{67768010415675}a^{10}+\frac{20\!\cdots\!23}{67768010415675}a^{8}+\frac{49\!\cdots\!53}{67768010415675}a^{6}+\frac{11\!\cdots\!67}{13553602083135}a^{4}+\frac{22\!\cdots\!63}{67768010415675}a^{2}+\frac{38784813339223}{67768010415675}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45363.6836572 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{9}\cdot 45363.6836572 \cdot 2240}{2\cdot\sqrt{12065345096686615429034956292096}}\cr\approx \mathstrut & 0.223241677366 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 + 48*x^16 + 873*x^14 + 8175*x^12 + 43777*x^10 + 137970*x^8 + 250326*x^6 + 242159*x^4 + 106935*x^2 + 16361);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_4^3.D_6$ (as 18T837):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 165888
The 130 conjugacy class representatives for $S_4^3.D_6$
Character table for $S_4^3.D_6$

Intermediate fields

3.3.148.1, 9.9.53038958912.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 18.0.737445455454227457309147136.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }^{2}$ ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ $18$ ${\href{/padicField/11.6.0.1}{6} }^{3}$ ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{3}$ R ${\href{/padicField/41.9.0.1}{9} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.18.30.57$x^{18} + 2 x^{17} + 26 x^{16} + 88 x^{15} + 282 x^{14} + 560 x^{13} + 1082 x^{12} + 1648 x^{11} + 2616 x^{10} + 3024 x^{9} + 3768 x^{8} + 3544 x^{7} + 4084 x^{6} + 3048 x^{5} + 2888 x^{4} + 1552 x^{3} + 1544 x^{2} + 592 x + 344$$6$$3$$30$18T366$[2, 2, 2, 8/3, 8/3, 8/3, 8/3]_{3}^{6}$
\(37\) Copy content Toggle raw display 37.2.1.1$x^{2} + 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} + 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.3.0.1$x^{3} + 6 x + 35$$1$$3$$0$$C_3$$[\ ]^{3}$
37.3.0.1$x^{3} + 6 x + 35$$1$$3$$0$$C_3$$[\ ]^{3}$
37.8.4.1$x^{8} + 3700 x^{7} + 5133910 x^{6} + 3166256548 x^{5} + 732510094073 x^{4} + 136269235536 x^{3} + 4476368972260 x^{2} + 17928293629116 x + 2173698901413$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(16361\) Copy content Toggle raw display $\Q_{16361}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{16361}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{16361}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{16361}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$