Properties

Label 18T837
Order \(165888\)
n \(18\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $18$
Transitive number $t$ :  $837$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (9,10)(11,12)(15,16)(17,18), (1,3)(2,4)(7,8)(13,14), (1,2)(7,8)(13,14), (1,15,9,3,18,11,6,14,7)(2,16,10,4,17,12,5,13,8), (1,11,2,12)(3,7,4,8)(5,9)(6,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3
96:  12T48
1296:  $S_3\wr S_3$
2592:  18T394
82944:  12T294

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 6: None

Degree 9: $S_3\wr S_3$

Low degree siblings

18T836 x 4, 18T837 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $165888=2^{11} \cdot 3^{4}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.