Properties

Label 17.3.207...144.1
Degree $17$
Signature $[3, 7]$
Discriminant $-2.075\times 10^{21}$
Root discriminant \(17.94\)
Ramified primes $2,17,20759,9318913,78851137$
Class number $1$
Class group trivial
Galois group $S_{17}$ (as 17T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1)
 
gp: K = bnfinit(y^17 - 2*y^16 + y^15 + 2*y^14 - 3*y^13 + 3*y^11 - 3*y^10 - y^9 + 6*y^8 - 5*y^7 - 4*y^6 + 8*y^5 - 3*y^4 - 4*y^3 + 3*y^2 - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1)
 

\( x^{17} - 2 x^{16} + x^{15} + 2 x^{14} - 3 x^{13} + 3 x^{11} - 3 x^{10} - x^{9} + 6 x^{8} - 5 x^{7} + \cdots - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $17$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[3, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-2074524434943857177144\) \(\medspace = -\,2^{3}\cdot 17\cdot 20759\cdot 9318913\cdot 78851137\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.94\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(17\), \(20759\), \(9318913\), \(78851137\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-51863\!\cdots\!94286}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a$, $2a^{16}-4a^{15}+3a^{14}+2a^{13}-5a^{12}+2a^{11}+3a^{10}-6a^{9}+a^{8}+9a^{7}-11a^{6}-2a^{5}+11a^{4}-10a^{3}+3a-3$, $a^{3}-a^{2}+a$, $7a^{16}-17a^{15}+15a^{14}+4a^{13}-19a^{12}+9a^{11}+12a^{10}-24a^{9}+7a^{8}+34a^{7}-48a^{6}-a^{5}+44a^{4}-39a^{3}+3a^{2}+12a-8$, $a^{16}-3a^{14}+3a^{13}+2a^{12}-5a^{11}+a^{10}+3a^{9}-5a^{8}+3a^{7}+7a^{6}-12a^{5}-4a^{4}+12a^{3}-3a^{2}-5a+2$, $a^{16}-4a^{15}+6a^{14}-2a^{13}-5a^{12}+6a^{11}+a^{10}-7a^{9}+5a^{8}+5a^{7}-16a^{6}+10a^{5}+10a^{4}-17a^{3}+5a^{2}+4a-3$, $8a^{16}-23a^{15}+27a^{14}-3a^{13}-26a^{12}+22a^{11}+11a^{10}-37a^{9}+20a^{8}+37a^{7}-75a^{6}+25a^{5}+57a^{4}-75a^{3}+18a^{2}+19a-16$, $7a^{16}-20a^{15}+23a^{14}-2a^{13}-23a^{12}+19a^{11}+10a^{10}-32a^{9}+17a^{8}+33a^{7}-65a^{6}+20a^{5}+50a^{4}-65a^{3}+14a^{2}+18a-13$, $3a^{16}-8a^{15}+7a^{14}+3a^{13}-10a^{12}+4a^{11}+7a^{10}-11a^{9}+2a^{8}+17a^{7}-24a^{6}-2a^{5}+25a^{4}-16a^{3}-3a^{2}+7a-2$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12720.6080668 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{7}\cdot 12720.6080668 \cdot 1}{2\cdot\sqrt{2074524434943857177144}}\cr\approx \mathstrut & 0.431884546286 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - 2*x^16 + x^15 + 2*x^14 - 3*x^13 + 3*x^11 - 3*x^10 - x^9 + 6*x^8 - 5*x^7 - 4*x^6 + 8*x^5 - 3*x^4 - 4*x^3 + 3*x^2 - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{17}$ (as 17T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 355687428096000
The 297 conjugacy class representatives for $S_{17}$
Character table for $S_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $17$ ${\href{/padicField/5.11.0.1}{11} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ $16{,}\,{\href{/padicField/13.1.0.1}{1} }$ R ${\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.8.0.1}{8} }$ ${\href{/padicField/23.13.0.1}{13} }{,}\,{\href{/padicField/23.4.0.1}{4} }$ ${\href{/padicField/29.13.0.1}{13} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ ${\href{/padicField/31.14.0.1}{14} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ ${\href{/padicField/37.7.0.1}{7} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ ${\href{/padicField/43.7.0.1}{7} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ $15{,}\,{\href{/padicField/53.2.0.1}{2} }$ $16{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.3.1$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$[3]$
2.15.0.1$x^{15} + x^{5} + x^{4} + x^{2} + 1$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.7.0.1$x^{7} + 12 x + 14$$1$$7$$0$$C_7$$[\ ]^{7}$
17.7.0.1$x^{7} + 12 x + 14$$1$$7$$0$$C_7$$[\ ]^{7}$
\(20759\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $15$$1$$15$$0$$C_{15}$$[\ ]^{15}$
\(9318913\) Copy content Toggle raw display $\Q_{9318913}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{9318913}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{9318913}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
\(78851137\) Copy content Toggle raw display Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $11$$1$$11$$0$$C_{11}$$[\ ]^{11}$