Properties

Label 17T10
Degree $17$
Order $3.557\times 10^{14}$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $S_{17}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(17, 10);
 

Group action invariants

Degree $n$:  $17$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $10$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_{17}$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
Nilpotency class:  $-1$ (not nilpotent)
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), (1,2)
magma: Generators(G);
 

Low degree resolvents

|G/N|Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 297 conjugacy classes of elements. Data not shown.

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $355687428096000=2^{15} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Label:  355687428096000.a
magma: IdentifyGroup(G);
 
Character table: not available.

magma: CharacterTable(G);