Normalized defining polynomial
\( x^{17} - 85 x^{15} + 2975 x^{13} - 55250 x^{11} + 584375 x^{9} - 3506250 x^{7} + 11156250 x^{5} - 15937500 x^{3} + 6640625 x - 1737500 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8272402618863367641770000000000000000=2^{16}\cdot 5^{16}\cdot 17^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{25} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{725} a^{9} + \frac{11}{725} a^{8} + \frac{13}{725} a^{7} - \frac{1}{145} a^{6} - \frac{2}{29} a^{5} - \frac{2}{145} a^{4} - \frac{5}{29} a^{3} - \frac{10}{29} a^{2} - \frac{7}{29} a - \frac{1}{29}$, $\frac{1}{725} a^{10} + \frac{8}{725} a^{8} - \frac{3}{725} a^{7} + \frac{1}{145} a^{6} - \frac{8}{145} a^{5} - \frac{3}{145} a^{4} - \frac{13}{29} a^{3} - \frac{13}{29} a^{2} - \frac{11}{29} a + \frac{11}{29}$, $\frac{1}{3625} a^{11} + \frac{1}{145} a^{8} - \frac{14}{725} a^{7} - \frac{2}{145} a^{5} - \frac{4}{145} a^{4} - \frac{12}{29} a^{3} + \frac{8}{29} a^{2} - \frac{4}{29} a - \frac{10}{29}$, $\frac{1}{3625} a^{12} - \frac{11}{725} a^{8} - \frac{7}{725} a^{7} + \frac{3}{145} a^{6} - \frac{12}{145} a^{5} + \frac{8}{145} a^{4} + \frac{4}{29} a^{3} - \frac{12}{29} a^{2} - \frac{4}{29} a + \frac{5}{29}$, $\frac{1}{3625} a^{13} - \frac{2}{725} a^{8} + \frac{13}{725} a^{7} + \frac{6}{145} a^{6} + \frac{14}{145} a^{5} - \frac{2}{145} a^{4} - \frac{9}{29} a^{3} + \frac{2}{29} a^{2} - \frac{14}{29} a - \frac{11}{29}$, $\frac{1}{18125} a^{14} + \frac{7}{725} a^{8} - \frac{12}{725} a^{7} + \frac{14}{145} a^{6} + \frac{13}{145} a^{5} - \frac{4}{145} a^{4} + \frac{10}{29} a^{3} - \frac{1}{29} a^{2} - \frac{5}{29} a - \frac{12}{29}$, $\frac{1}{18125} a^{15} - \frac{2}{725} a^{8} + \frac{8}{725} a^{7} - \frac{9}{145} a^{6} + \frac{8}{145} a^{5} + \frac{6}{145} a^{4} + \frac{5}{29} a^{3} + \frac{7}{29} a^{2} + \frac{8}{29} a + \frac{7}{29}$, $\frac{1}{18125} a^{16} + \frac{1}{725} a^{8} + \frac{2}{145} a^{7} + \frac{6}{145} a^{6} - \frac{14}{145} a^{5} - \frac{8}{145} a^{4} - \frac{3}{29} a^{3} - \frac{12}{29} a^{2} - \frac{7}{29} a - \frac{2}{29}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48080253767000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 272 |
| The 17 conjugacy class representatives for $F_{17}$ |
| Character table for $F_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | $16{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||