Normalized defining polynomial
\( x^{17} - x^{16} - 448 x^{15} + 1309 x^{14} + 75494 x^{13} - 374314 x^{12} - 5597667 x^{11} + 41830550 x^{10} + 136426018 x^{9} - 1919481097 x^{8} + 2548312782 x^{7} + 27117309376 x^{6} - 105628969954 x^{5} + 34101907629 x^{4} + 457076113374 x^{3} - 817186035962 x^{2} + 323264486326 x + 117028501127 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(462899178676311160288470191817767102492054133121=953^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $636.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $953$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(953\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{953}(256,·)$, $\chi_{953}(1,·)$, $\chi_{953}(770,·)$, $\chi_{953}(134,·)$, $\chi_{953}(16,·)$, $\chi_{953}(276,·)$, $\chi_{953}(732,·)$, $\chi_{953}(604,·)$, $\chi_{953}(417,·)$, $\chi_{953}(802,·)$, $\chi_{953}(284,·)$, $\chi_{953}(238,·)$, $\chi_{953}(882,·)$, $\chi_{953}(884,·)$, $\chi_{953}(949,·)$, $\chi_{953}(889,·)$, $\chi_{953}(443,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{109} a^{15} - \frac{29}{109} a^{14} - \frac{2}{109} a^{13} - \frac{11}{109} a^{12} + \frac{16}{109} a^{11} - \frac{27}{109} a^{10} + \frac{51}{109} a^{9} + \frac{8}{109} a^{8} - \frac{50}{109} a^{7} - \frac{37}{109} a^{6} - \frac{28}{109} a^{5} + \frac{28}{109} a^{4} - \frac{2}{109} a^{3} + \frac{41}{109} a^{2} + \frac{52}{109} a - \frac{1}{109}$, $\frac{1}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{16} - \frac{370775489065786690823086414238723888989638059417869812295596978244318634938}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{15} + \frac{43034875624085183733350666472854084663991773757520947640342016683487686374168}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{14} + \frac{11651393661818849092559244110544546456773901171982796489270121943180555316046}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{13} - \frac{56932349809385201816060465020027722982606037125415927199135434185037341281191}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{12} - \frac{52027237792250642435290381262127817070776575714972894421514218806381185770074}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{11} - \frac{8649526255971723887081930728586500907298678877541114488715547328417973375481}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{10} + \frac{45561057816752480357500442247480666434142732433290991560138549404640882721212}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{9} - \frac{52039442837110885124913468970044014330798328533242693235015391033793072842976}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{8} - \frac{5390795193929488026887231443731533730743911926727853809957885869197821218371}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{7} - \frac{32230190642935556438476733700294121950405077355734544047305371020272849389668}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{6} + \frac{38250518970714596197100910986284540606366446498273849708448476578439888016713}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{5} - \frac{19370715639306886462036223719841631497868017427033466629861897254150557994238}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{4} + \frac{58619452384842523912190176365140301756098026526619709349439266480392105900920}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{3} - \frac{6525449010304667664330414010655909074992218379193382332226982303473292535817}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a^{2} - \frac{33772976072158228296086565842456004372675935431653294303150845606604803313080}{147013901317241646584286723478269847178967463718076648691199395367954067241097} a - \frac{32041049269316688198378480255832130040158167165648228709736021637909447652935}{147013901317241646584286723478269847178967463718076648691199395367954067241097}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1792851846429171700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 953 | Data not computed | ||||||