Normalized defining polynomial
\( x^{17} - x^{16} - 208 x^{15} - 17 x^{14} + 15287 x^{13} + 13881 x^{12} - 487578 x^{11} - 703261 x^{10} + 6754359 x^{9} + 10540902 x^{8} - 41136753 x^{7} - 57683825 x^{6} + 92010954 x^{5} + 95287840 x^{4} - 17501435 x^{3} - 25026156 x^{2} - 563260 x + 1246103 \)
Invariants
| Degree: | $17$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[17, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2200187128095499475530336818113367454680001=443^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $309.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $443$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(443\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{443}(1,·)$, $\chi_{443}(67,·)$, $\chi_{443}(324,·)$, $\chi_{443}(267,·)$, $\chi_{443}(13,·)$, $\chi_{443}(270,·)$, $\chi_{443}(209,·)$, $\chi_{443}(409,·)$, $\chi_{443}(225,·)$, $\chi_{443}(123,·)$, $\chi_{443}(425,·)$, $\chi_{443}(428,·)$, $\chi_{443}(370,·)$, $\chi_{443}(169,·)$, $\chi_{443}(248,·)$, $\chi_{443}(59,·)$, $\chi_{443}(380,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4013480870186551123112427443978541538197334827965530746341757461} a^{16} + \frac{30664611433497702720987163865545312304482917972317611699004451}{4013480870186551123112427443978541538197334827965530746341757461} a^{15} - \frac{234236602191203470251879063625934586476098163260364116994871423}{4013480870186551123112427443978541538197334827965530746341757461} a^{14} - \frac{1538525439450223170396067485610034784683093539704487494351943862}{4013480870186551123112427443978541538197334827965530746341757461} a^{13} + \frac{55342538172956023481629299767885008096663009551709221443365116}{4013480870186551123112427443978541538197334827965530746341757461} a^{12} + \frac{753763549332543509880444461910703558803979931791746488591544835}{4013480870186551123112427443978541538197334827965530746341757461} a^{11} + \frac{449079695525428969055400104617954013904982282494392624345855044}{4013480870186551123112427443978541538197334827965530746341757461} a^{10} + \frac{1356331504173895330061633890226502143904723258261751560217500635}{4013480870186551123112427443978541538197334827965530746341757461} a^{9} - \frac{258115246454719936497475617167093245823083651779523923072083989}{4013480870186551123112427443978541538197334827965530746341757461} a^{8} - \frac{1439096506119506255900602412328539151888891788935030943061379179}{4013480870186551123112427443978541538197334827965530746341757461} a^{7} - \frac{264370601676178270686168837198796059220002990634243712724781297}{4013480870186551123112427443978541538197334827965530746341757461} a^{6} - \frac{180010373031027196207070542203811906918368022587662836705394813}{4013480870186551123112427443978541538197334827965530746341757461} a^{5} + \frac{782240170953201337633372345915642504015417842262032178961326220}{4013480870186551123112427443978541538197334827965530746341757461} a^{4} - \frac{425224591713287603242465941484685733198764997139724614627529825}{4013480870186551123112427443978541538197334827965530746341757461} a^{3} + \frac{1591411055048919701518357482737603500517050089451817421319409739}{4013480870186551123112427443978541538197334827965530746341757461} a^{2} + \frac{1107332544781032139606978167678448335717904050624033843189535906}{4013480870186551123112427443978541538197334827965530746341757461} a - \frac{1274193145411167372061357994658018891769389950257661519381602369}{4013480870186551123112427443978541538197334827965530746341757461}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2360552434044002.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 17 |
| The 17 conjugacy class representatives for $C_{17}$ |
| Character table for $C_{17}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 443 | Data not computed | ||||||