Properties

Label 17.17.113...161.1
Degree $17$
Signature $[17, 0]$
Discriminant $1.133\times 10^{38}$
Root discriminant \(173.18\)
Ramified prime $239$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{17}$ (as 17T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619)
 
Copy content gp:K = bnfinit(y^17 - y^16 - 112*y^15 + 47*y^14 + 3976*y^13 - 4314*y^12 - 64388*y^11 + 136247*y^10 + 422013*y^9 - 1631073*y^8 + 411840*y^7 + 5840196*y^6 - 11894369*y^5 + 10635750*y^4 - 4739804*y^3 + 938485*y^2 - 54850*y + 619, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619)
 

\( x^{17} - x^{16} - 112 x^{15} + 47 x^{14} + 3976 x^{13} - 4314 x^{12} - 64388 x^{11} + 136247 x^{10} + \cdots + 619 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $17$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[17, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(113335617496346216833223278514633468161\) \(\medspace = 239^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(173.18\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $239^{16/17}\approx 173.17776964513632$
Ramified primes:   \(239\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{17}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(239\)
Dirichlet character group:    $\lbrace$$\chi_{239}(128,·)$, $\chi_{239}(1,·)$, $\chi_{239}(67,·)$, $\chi_{239}(132,·)$, $\chi_{239}(6,·)$, $\chi_{239}(71,·)$, $\chi_{239}(75,·)$, $\chi_{239}(211,·)$, $\chi_{239}(22,·)$, $\chi_{239}(216,·)$, $\chi_{239}(163,·)$, $\chi_{239}(36,·)$, $\chi_{239}(101,·)$, $\chi_{239}(166,·)$, $\chi_{239}(40,·)$, $\chi_{239}(51,·)$, $\chi_{239}(187,·)$$\rbrace$
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17044241}a^{15}+\frac{7923170}{17044241}a^{14}+\frac{689862}{17044241}a^{13}+\frac{6847608}{17044241}a^{12}-\frac{7864577}{17044241}a^{11}+\frac{293236}{17044241}a^{10}-\frac{5493659}{17044241}a^{9}+\frac{7262608}{17044241}a^{8}-\frac{1203353}{17044241}a^{7}+\frac{1583552}{17044241}a^{6}-\frac{1066023}{17044241}a^{5}-\frac{510254}{17044241}a^{4}+\frac{638656}{17044241}a^{3}+\frac{5875424}{17044241}a^{2}-\frac{1483120}{17044241}a+\frac{1127039}{17044241}$, $\frac{1}{31\cdots 09}a^{16}+\frac{32\cdots 12}{11\cdots 23}a^{15}+\frac{93\cdots 60}{31\cdots 09}a^{14}+\frac{55\cdots 64}{31\cdots 09}a^{13}+\frac{14\cdots 02}{31\cdots 09}a^{12}-\frac{97\cdots 08}{31\cdots 09}a^{11}+\frac{28\cdots 91}{31\cdots 09}a^{10}+\frac{69\cdots 00}{31\cdots 09}a^{9}-\frac{23\cdots 90}{31\cdots 09}a^{8}+\frac{13\cdots 75}{31\cdots 09}a^{7}-\frac{16\cdots 24}{31\cdots 09}a^{6}+\frac{14\cdots 41}{31\cdots 09}a^{5}+\frac{11\cdots 08}{31\cdots 09}a^{4}+\frac{64\cdots 08}{31\cdots 09}a^{3}+\frac{30\cdots 12}{31\cdots 09}a^{2}+\frac{65\cdots 77}{31\cdots 09}a-\frac{70\cdots 01}{50\cdots 11}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $16$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{36\cdots 80}{31\cdots 09}a^{16}-\frac{81\cdots 54}{31\cdots 09}a^{15}-\frac{42\cdots 58}{31\cdots 09}a^{14}+\frac{65\cdots 01}{31\cdots 09}a^{13}+\frac{16\cdots 93}{31\cdots 09}a^{12}-\frac{29\cdots 32}{31\cdots 09}a^{11}-\frac{29\cdots 49}{31\cdots 09}a^{10}+\frac{70\cdots 86}{31\cdots 09}a^{9}+\frac{21\cdots 90}{31\cdots 09}a^{8}-\frac{78\cdots 98}{31\cdots 09}a^{7}-\frac{14\cdots 43}{31\cdots 09}a^{6}+\frac{31\cdots 98}{31\cdots 09}a^{5}-\frac{42\cdots 92}{31\cdots 09}a^{4}+\frac{15\cdots 21}{31\cdots 09}a^{3}+\frac{41\cdots 38}{31\cdots 09}a^{2}-\frac{22\cdots 10}{31\cdots 09}a+\frac{98\cdots 95}{50\cdots 11}$, $\frac{18\cdots 51}{31\cdots 09}a^{16}+\frac{36\cdots 46}{31\cdots 09}a^{15}-\frac{20\cdots 11}{31\cdots 09}a^{14}-\frac{15\cdots 05}{31\cdots 09}a^{13}+\frac{69\cdots 97}{31\cdots 09}a^{12}+\frac{40\cdots 93}{31\cdots 09}a^{11}-\frac{11\cdots 46}{31\cdots 09}a^{10}+\frac{11\cdots 05}{31\cdots 09}a^{9}+\frac{86\cdots 26}{31\cdots 09}a^{8}-\frac{19\cdots 64}{31\cdots 09}a^{7}-\frac{44\cdots 98}{11\cdots 23}a^{6}+\frac{87\cdots 64}{31\cdots 09}a^{5}-\frac{11\cdots 65}{31\cdots 09}a^{4}+\frac{75\cdots 85}{31\cdots 09}a^{3}-\frac{22\cdots 13}{31\cdots 09}a^{2}+\frac{29\cdots 31}{31\cdots 09}a-\frac{16\cdots 04}{50\cdots 11}$, $\frac{22\cdots 92}{31\cdots 09}a^{16}+\frac{56\cdots 75}{31\cdots 09}a^{15}-\frac{24\cdots 43}{31\cdots 09}a^{14}-\frac{75\cdots 51}{31\cdots 09}a^{13}+\frac{75\cdots 97}{31\cdots 09}a^{12}+\frac{18\cdots 41}{31\cdots 09}a^{11}-\frac{12\cdots 65}{31\cdots 09}a^{10}-\frac{14\cdots 27}{31\cdots 09}a^{9}+\frac{11\cdots 78}{31\cdots 09}a^{8}-\frac{10\cdots 91}{31\cdots 09}a^{7}-\frac{47\cdots 63}{31\cdots 09}a^{6}+\frac{55\cdots 29}{31\cdots 09}a^{5}+\frac{35\cdots 09}{31\cdots 09}a^{4}-\frac{10\cdots 30}{31\cdots 09}a^{3}+\frac{69\cdots 91}{31\cdots 09}a^{2}-\frac{54\cdots 83}{11\cdots 43}a+\frac{32\cdots 67}{50\cdots 11}$, $\frac{10\cdots 01}{31\cdots 09}a^{16}+\frac{24\cdots 78}{13\cdots 21}a^{15}-\frac{10\cdots 70}{31\cdots 09}a^{14}-\frac{67\cdots 59}{31\cdots 09}a^{13}+\frac{24\cdots 47}{31\cdots 09}a^{12}+\frac{17\cdots 08}{31\cdots 09}a^{11}-\frac{31\cdots 29}{31\cdots 09}a^{10}-\frac{20\cdots 84}{31\cdots 09}a^{9}+\frac{30\cdots 82}{31\cdots 09}a^{8}+\frac{10\cdots 04}{31\cdots 09}a^{7}-\frac{20\cdots 16}{31\cdots 09}a^{6}-\frac{13\cdots 57}{31\cdots 09}a^{5}+\frac{54\cdots 82}{31\cdots 09}a^{4}-\frac{45\cdots 20}{31\cdots 09}a^{3}+\frac{14\cdots 47}{31\cdots 09}a^{2}-\frac{15\cdots 23}{31\cdots 09}a+\frac{69\cdots 10}{50\cdots 11}$, $\frac{27\cdots 24}{31\cdots 09}a^{16}+\frac{58\cdots 42}{31\cdots 09}a^{15}-\frac{30\cdots 37}{31\cdots 09}a^{14}-\frac{35\cdots 37}{13\cdots 21}a^{13}+\frac{94\cdots 10}{31\cdots 09}a^{12}+\frac{18\cdots 24}{31\cdots 09}a^{11}-\frac{15\cdots 02}{31\cdots 09}a^{10}-\frac{11\cdots 15}{31\cdots 09}a^{9}+\frac{12\cdots 13}{31\cdots 09}a^{8}-\frac{61\cdots 87}{31\cdots 09}a^{7}-\frac{45\cdots 79}{31\cdots 09}a^{6}+\frac{72\cdots 75}{31\cdots 09}a^{5}-\frac{14\cdots 61}{31\cdots 09}a^{4}-\frac{41\cdots 43}{31\cdots 09}a^{3}+\frac{30\cdots 00}{31\cdots 09}a^{2}-\frac{61\cdots 43}{31\cdots 09}a+\frac{15\cdots 30}{50\cdots 11}$, $\frac{12\cdots 83}{31\cdots 09}a^{16}+\frac{98\cdots 12}{31\cdots 09}a^{15}-\frac{14\cdots 08}{31\cdots 09}a^{14}-\frac{18\cdots 20}{31\cdots 09}a^{13}+\frac{46\cdots 30}{31\cdots 09}a^{12}+\frac{25\cdots 47}{31\cdots 09}a^{11}-\frac{75\cdots 27}{31\cdots 09}a^{10}+\frac{45\cdots 65}{31\cdots 09}a^{9}+\frac{57\cdots 09}{31\cdots 09}a^{8}-\frac{10\cdots 41}{31\cdots 09}a^{7}-\frac{96\cdots 67}{31\cdots 09}a^{6}+\frac{52\cdots 03}{31\cdots 09}a^{5}-\frac{70\cdots 08}{31\cdots 09}a^{4}+\frac{46\cdots 67}{31\cdots 09}a^{3}-\frac{15\cdots 02}{31\cdots 09}a^{2}+\frac{24\cdots 50}{31\cdots 09}a-\frac{17\cdots 94}{50\cdots 11}$, $\frac{24\cdots 49}{31\cdots 09}a^{16}+\frac{92\cdots 45}{31\cdots 09}a^{15}-\frac{27\cdots 90}{31\cdots 09}a^{14}-\frac{26\cdots 43}{31\cdots 09}a^{13}+\frac{94\cdots 90}{31\cdots 09}a^{12}+\frac{22\cdots 21}{31\cdots 09}a^{11}-\frac{15\cdots 85}{31\cdots 09}a^{10}+\frac{12\cdots 15}{31\cdots 09}a^{9}+\frac{12\cdots 85}{31\cdots 09}a^{8}-\frac{23\cdots 90}{31\cdots 09}a^{7}-\frac{21\cdots 81}{31\cdots 09}a^{6}+\frac{11\cdots 29}{31\cdots 09}a^{5}-\frac{14\cdots 25}{31\cdots 09}a^{4}+\frac{76\cdots 45}{31\cdots 09}a^{3}-\frac{17\cdots 48}{31\cdots 09}a^{2}+\frac{11\cdots 82}{31\cdots 09}a-\frac{21\cdots 25}{50\cdots 11}$, $\frac{27\cdots 57}{31\cdots 09}a^{16}+\frac{16\cdots 98}{31\cdots 09}a^{15}-\frac{27\cdots 56}{31\cdots 09}a^{14}-\frac{19\cdots 96}{31\cdots 09}a^{13}+\frac{56\cdots 39}{31\cdots 09}a^{12}+\frac{51\cdots 06}{31\cdots 09}a^{11}-\frac{59\cdots 19}{31\cdots 09}a^{10}-\frac{60\cdots 50}{31\cdots 09}a^{9}+\frac{58\cdots 82}{31\cdots 09}a^{8}+\frac{34\cdots 28}{31\cdots 09}a^{7}-\frac{46\cdots 95}{31\cdots 09}a^{6}-\frac{72\cdots 26}{31\cdots 09}a^{5}+\frac{16\cdots 57}{31\cdots 09}a^{4}-\frac{75\cdots 54}{31\cdots 09}a^{3}-\frac{83\cdots 74}{31\cdots 09}a^{2}+\frac{85\cdots 58}{31\cdots 09}a-\frac{84\cdots 13}{50\cdots 11}$, $\frac{64\cdots 09}{31\cdots 09}a^{16}-\frac{21\cdots 82}{31\cdots 09}a^{15}-\frac{71\cdots 78}{31\cdots 09}a^{14}-\frac{16\cdots 88}{31\cdots 09}a^{13}+\frac{24\cdots 05}{31\cdots 09}a^{12}-\frac{12\cdots 29}{31\cdots 09}a^{11}-\frac{40\cdots 77}{31\cdots 09}a^{10}+\frac{63\cdots 19}{31\cdots 09}a^{9}+\frac{28\cdots 92}{31\cdots 09}a^{8}-\frac{85\cdots 01}{31\cdots 09}a^{7}-\frac{45\cdots 06}{31\cdots 09}a^{6}+\frac{33\cdots 52}{31\cdots 09}a^{5}-\frac{60\cdots 19}{31\cdots 09}a^{4}+\frac{48\cdots 75}{31\cdots 09}a^{3}-\frac{18\cdots 76}{31\cdots 09}a^{2}+\frac{26\cdots 28}{31\cdots 09}a-\frac{62\cdots 90}{50\cdots 11}$, $\frac{43\cdots 16}{31\cdots 09}a^{16}-\frac{16\cdots 10}{31\cdots 09}a^{15}-\frac{48\cdots 34}{31\cdots 09}a^{14}-\frac{11\cdots 51}{31\cdots 09}a^{13}+\frac{17\cdots 79}{31\cdots 09}a^{12}-\frac{62\cdots 30}{31\cdots 09}a^{11}-\frac{29\cdots 83}{31\cdots 09}a^{10}+\frac{37\cdots 18}{31\cdots 09}a^{9}+\frac{22\cdots 63}{31\cdots 09}a^{8}-\frac{54\cdots 95}{31\cdots 09}a^{7}-\frac{29\cdots 10}{31\cdots 09}a^{6}+\frac{23\cdots 46}{31\cdots 09}a^{5}-\frac{32\cdots 91}{31\cdots 09}a^{4}+\frac{18\cdots 55}{31\cdots 09}a^{3}-\frac{43\cdots 74}{31\cdots 09}a^{2}+\frac{21\cdots 05}{31\cdots 09}a-\frac{30\cdots 92}{50\cdots 11}$, $\frac{35\cdots 04}{31\cdots 09}a^{16}-\frac{55\cdots 87}{31\cdots 09}a^{15}-\frac{40\cdots 79}{31\cdots 09}a^{14}+\frac{36\cdots 05}{31\cdots 09}a^{13}+\frac{15\cdots 09}{31\cdots 09}a^{12}-\frac{20\cdots 37}{31\cdots 09}a^{11}-\frac{26\cdots 05}{31\cdots 09}a^{10}+\frac{55\cdots 44}{31\cdots 09}a^{9}+\frac{18\cdots 33}{31\cdots 09}a^{8}-\frac{64\cdots 21}{31\cdots 09}a^{7}-\frac{61\cdots 85}{31\cdots 09}a^{6}+\frac{25\cdots 43}{31\cdots 09}a^{5}-\frac{39\cdots 14}{31\cdots 09}a^{4}+\frac{25\cdots 74}{31\cdots 09}a^{3}-\frac{65\cdots 28}{31\cdots 09}a^{2}+\frac{50\cdots 38}{31\cdots 09}a-\frac{77\cdots 31}{50\cdots 11}$, $\frac{39\cdots 47}{31\cdots 09}a^{16}-\frac{21\cdots 15}{31\cdots 09}a^{15}-\frac{44\cdots 09}{31\cdots 09}a^{14}-\frac{25\cdots 85}{31\cdots 09}a^{13}+\frac{15\cdots 49}{31\cdots 09}a^{12}-\frac{80\cdots 24}{31\cdots 09}a^{11}-\frac{26\cdots 84}{31\cdots 09}a^{10}+\frac{37\cdots 84}{31\cdots 09}a^{9}+\frac{20\cdots 92}{31\cdots 09}a^{8}-\frac{51\cdots 48}{31\cdots 09}a^{7}-\frac{26\cdots 40}{31\cdots 09}a^{6}+\frac{21\cdots 71}{31\cdots 09}a^{5}-\frac{29\cdots 64}{31\cdots 09}a^{4}+\frac{16\cdots 81}{31\cdots 09}a^{3}-\frac{37\cdots 62}{31\cdots 09}a^{2}+\frac{23\cdots 77}{31\cdots 09}a-\frac{50\cdots 27}{50\cdots 11}$, $\frac{17\cdots 04}{31\cdots 09}a^{16}+\frac{18\cdots 56}{31\cdots 09}a^{15}-\frac{19\cdots 03}{31\cdots 09}a^{14}-\frac{30\cdots 96}{31\cdots 09}a^{13}+\frac{63\cdots 00}{31\cdots 09}a^{12}+\frac{53\cdots 84}{31\cdots 09}a^{11}-\frac{10\cdots 11}{31\cdots 09}a^{10}+\frac{30\cdots 00}{31\cdots 09}a^{9}+\frac{80\cdots 04}{31\cdots 09}a^{8}-\frac{12\cdots 10}{31\cdots 09}a^{7}-\frac{17\cdots 26}{31\cdots 09}a^{6}+\frac{65\cdots 19}{31\cdots 09}a^{5}-\frac{72\cdots 42}{31\cdots 09}a^{4}+\frac{36\cdots 22}{31\cdots 09}a^{3}-\frac{82\cdots 61}{31\cdots 09}a^{2}+\frac{61\cdots 59}{31\cdots 09}a-\frac{22\cdots 47}{50\cdots 11}$, $\frac{75\cdots 70}{31\cdots 09}a^{16}-\frac{29\cdots 00}{31\cdots 09}a^{15}-\frac{84\cdots 82}{31\cdots 09}a^{14}-\frac{16\cdots 36}{31\cdots 09}a^{13}+\frac{30\cdots 76}{31\cdots 09}a^{12}-\frac{13\cdots 12}{31\cdots 09}a^{11}-\frac{19\cdots 92}{11\cdots 43}a^{10}+\frac{71\cdots 08}{31\cdots 09}a^{9}+\frac{37\cdots 35}{31\cdots 09}a^{8}-\frac{99\cdots 10}{31\cdots 09}a^{7}-\frac{40\cdots 13}{31\cdots 09}a^{6}+\frac{42\cdots 71}{31\cdots 09}a^{5}-\frac{60\cdots 80}{31\cdots 09}a^{4}+\frac{35\cdots 01}{31\cdots 09}a^{3}-\frac{80\cdots 71}{31\cdots 09}a^{2}+\frac{44\cdots 90}{31\cdots 09}a-\frac{95\cdots 43}{50\cdots 11}$, $\frac{47\cdots 63}{31\cdots 09}a^{16}+\frac{63\cdots 23}{31\cdots 09}a^{15}-\frac{51\cdots 66}{31\cdots 09}a^{14}-\frac{99\cdots 24}{31\cdots 09}a^{13}+\frac{16\cdots 66}{31\cdots 09}a^{12}+\frac{18\cdots 36}{31\cdots 09}a^{11}-\frac{26\cdots 41}{31\cdots 09}a^{10}+\frac{22\cdots 29}{31\cdots 09}a^{9}+\frac{20\cdots 90}{31\cdots 09}a^{8}-\frac{28\cdots 96}{31\cdots 09}a^{7}-\frac{49\cdots 74}{31\cdots 09}a^{6}+\frac{16\cdots 47}{31\cdots 09}a^{5}-\frac{17\cdots 05}{31\cdots 09}a^{4}+\frac{83\cdots 56}{31\cdots 09}a^{3}-\frac{17\cdots 56}{31\cdots 09}a^{2}+\frac{97\cdots 88}{31\cdots 09}a-\frac{16\cdots 33}{50\cdots 11}$, $\frac{60\cdots 44}{31\cdots 09}a^{16}+\frac{20\cdots 64}{31\cdots 09}a^{15}-\frac{66\cdots 15}{31\cdots 09}a^{14}-\frac{61\cdots 14}{31\cdots 09}a^{13}+\frac{22\cdots 92}{31\cdots 09}a^{12}+\frac{44\cdots 66}{31\cdots 09}a^{11}-\frac{37\cdots 88}{31\cdots 09}a^{10}+\frac{31\cdots 02}{31\cdots 09}a^{9}+\frac{28\cdots 05}{31\cdots 09}a^{8}-\frac{58\cdots 09}{31\cdots 09}a^{7}-\frac{45\cdots 56}{31\cdots 09}a^{6}+\frac{27\cdots 84}{31\cdots 09}a^{5}-\frac{35\cdots 21}{31\cdots 09}a^{4}+\frac{21\cdots 25}{31\cdots 09}a^{3}-\frac{62\cdots 23}{31\cdots 09}a^{2}+\frac{71\cdots 42}{31\cdots 09}a-\frac{25\cdots 42}{50\cdots 11}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 24055588816300 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{17}\cdot(2\pi)^{0}\cdot 24055588816300 \cdot 1}{2\cdot\sqrt{113335617496346216833223278514633468161}}\cr\approx \mathstrut & 0.148085560941044 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^17 - x^16 - 112*x^15 + 47*x^14 + 3976*x^13 - 4314*x^12 - 64388*x^11 + 136247*x^10 + 422013*x^9 - 1631073*x^8 + 411840*x^7 + 5840196*x^6 - 11894369*x^5 + 10635750*x^4 - 4739804*x^3 + 938485*x^2 - 54850*x + 619); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{17}$ (as 17T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 17
The 17 conjugacy class representatives for $C_{17}$
Character table for $C_{17}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$ $17$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(239\) Copy content Toggle raw display Deg $17$$17$$1$$16$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)