Normalized defining polynomial
\(x^{17} - x^{16} - 112 x^{15} + 47 x^{14} + 3976 x^{13} - 4314 x^{12} - 64388 x^{11} + 136247 x^{10} + 422013 x^{9} - 1631073 x^{8} + 411840 x^{7} + 5840196 x^{6} - 11894369 x^{5} + 10635750 x^{4} - 4739804 x^{3} + 938485 x^{2} - 54850 x + 619\)
Invariants
Degree: | $17$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[17, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(113335617496346216833223278514633468161\)\(\medspace = 239^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $173.18$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $239$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $17$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(239\) | ||
Dirichlet character group: | $\lbrace$$\chi_{239}(128,·)$, $\chi_{239}(1,·)$, $\chi_{239}(67,·)$, $\chi_{239}(132,·)$, $\chi_{239}(6,·)$, $\chi_{239}(71,·)$, $\chi_{239}(75,·)$, $\chi_{239}(211,·)$, $\chi_{239}(22,·)$, $\chi_{239}(216,·)$, $\chi_{239}(163,·)$, $\chi_{239}(36,·)$, $\chi_{239}(101,·)$, $\chi_{239}(166,·)$, $\chi_{239}(40,·)$, $\chi_{239}(51,·)$, $\chi_{239}(187,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17044241} a^{15} + \frac{7923170}{17044241} a^{14} + \frac{689862}{17044241} a^{13} + \frac{6847608}{17044241} a^{12} - \frac{7864577}{17044241} a^{11} + \frac{293236}{17044241} a^{10} - \frac{5493659}{17044241} a^{9} + \frac{7262608}{17044241} a^{8} - \frac{1203353}{17044241} a^{7} + \frac{1583552}{17044241} a^{6} - \frac{1066023}{17044241} a^{5} - \frac{510254}{17044241} a^{4} + \frac{638656}{17044241} a^{3} + \frac{5875424}{17044241} a^{2} - \frac{1483120}{17044241} a + \frac{1127039}{17044241}$, $\frac{1}{3146212685301157790197646909} a^{16} + \frac{321302530370239512}{11117359312018225407058823} a^{15} + \frac{931869356563958800550173360}{3146212685301157790197646909} a^{14} + \frac{552804684805408253390411164}{3146212685301157790197646909} a^{13} + \frac{1487953305986084086487087402}{3146212685301157790197646909} a^{12} - \frac{975115675359830725592604408}{3146212685301157790197646909} a^{11} + \frac{283672140826449234617724591}{3146212685301157790197646909} a^{10} + \frac{694304344494880202387970900}{3146212685301157790197646909} a^{9} - \frac{236539474078061516527332990}{3146212685301157790197646909} a^{8} + \frac{1341028456795626068941899775}{3146212685301157790197646909} a^{7} - \frac{168169734412620181297958224}{3146212685301157790197646909} a^{6} + \frac{1439773272590715438339647841}{3146212685301157790197646909} a^{5} + \frac{113389185701611144346840708}{3146212685301157790197646909} a^{4} + \frac{644557152152711011429553008}{3146212685301157790197646909} a^{3} + \frac{309396518439439996729185912}{3146212685301157790197646909} a^{2} + \frac{651624250772576365943634777}{3146212685301157790197646909} a - \frac{700795773717520913653501}{5082734548144035202257911}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $16$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 24055588816300 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 17 |
The 17 conjugacy class representatives for $C_{17}$ |
Character table for $C_{17}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ | $17$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
239 | Data not computed |