Normalized defining polynomial
\( x^{16} - 8x^{14} + 12x^{12} - 8x^{10} + 42x^{8} - 72x^{6} + 36x^{4} - 8x^{2} + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(73786976294838206464\)
\(\medspace = 2^{66}\)
|
| |
| Root discriminant: | \(17.45\) |
| |
| Galois root discriminant: | $2^{67/16}\approx 18.220618156107065$ | ||
| Ramified primes: |
\(2\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{1028}a^{14}-\frac{25}{1028}a^{12}-\frac{77}{1028}a^{10}-\frac{241}{1028}a^{8}-\frac{487}{1028}a^{6}-\frac{17}{1028}a^{4}-\frac{189}{1028}a^{2}-\frac{393}{1028}$, $\frac{1}{1028}a^{15}-\frac{25}{1028}a^{13}-\frac{77}{1028}a^{11}+\frac{4}{257}a^{9}-\frac{1}{4}a^{8}+\frac{27}{1028}a^{7}-\frac{1}{2}a^{6}+\frac{497}{1028}a^{5}-\frac{1}{2}a^{4}+\frac{325}{1028}a^{3}-\frac{1}{2}a^{2}+\frac{189}{514}a+\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{111}{514}a^{14}-\frac{1695}{1028}a^{12}+\frac{481}{257}a^{10}-\frac{303}{1028}a^{8}+\frac{4539}{514}a^{6}-\frac{12255}{1028}a^{4}-\frac{81}{257}a^{2}-\frac{123}{1028}$, $\frac{99}{1028}a^{15}-\frac{933}{1028}a^{13}+\frac{2143}{1028}a^{11}-\frac{1243}{1028}a^{9}+\frac{4215}{1028}a^{7}-\frac{12477}{1028}a^{5}+\frac{7503}{1028}a^{3}+\frac{157}{1028}a$, $a$, $\frac{122}{257}a^{15}-\frac{994}{257}a^{13}+\frac{6371}{1028}a^{11}-\frac{4271}{1028}a^{9}+\frac{5093}{257}a^{7}-\frac{9527}{257}a^{5}+\frac{19563}{1028}a^{3}-\frac{2375}{1028}a$, $\frac{99}{1028}a^{15}+\frac{51}{1028}a^{14}-\frac{933}{1028}a^{13}-\frac{247}{1028}a^{12}+\frac{2143}{1028}a^{11}-\frac{293}{514}a^{10}-\frac{1243}{1028}a^{9}+\frac{204}{257}a^{8}+\frac{4215}{1028}a^{7}+\frac{1891}{1028}a^{6}-\frac{12477}{1028}a^{5}+\frac{2217}{1028}a^{4}+\frac{7503}{1028}a^{3}-\frac{3149}{514}a^{2}+\frac{157}{1028}a+\frac{65}{257}$, $a^{15}+\frac{383}{1028}a^{14}-8a^{13}-\frac{2893}{1028}a^{12}+12a^{11}+\frac{787}{257}a^{10}-8a^{9}-\frac{277}{514}a^{8}+42a^{7}+\frac{14967}{1028}a^{6}-72a^{5}-\frac{20389}{1028}a^{4}+36a^{3}-\frac{171}{257}a^{2}-8a+\frac{941}{514}$, $\frac{333}{1028}a^{15}+\frac{573}{1028}a^{14}-\frac{1207}{514}a^{13}-\frac{2151}{514}a^{12}+\frac{2115}{1028}a^{11}+\frac{4709}{1028}a^{10}-\frac{583}{1028}a^{9}-\frac{1883}{1028}a^{8}+\frac{13103}{1028}a^{7}+\frac{22667}{1028}a^{6}-\frac{3407}{257}a^{5}-\frac{7511}{257}a^{4}-\frac{1771}{1028}a^{3}+\frac{4783}{1028}a^{2}-\frac{1341}{1028}a-\frac{1085}{1028}$, $\frac{32}{257}a^{15}-\frac{105}{514}a^{14}-\frac{286}{257}a^{13}+\frac{413}{257}a^{12}+\frac{620}{257}a^{11}-\frac{1167}{514}a^{10}-\frac{2321}{1028}a^{9}+\frac{1523}{1028}a^{8}+\frac{3013}{514}a^{7}-\frac{2060}{257}a^{6}-\frac{6999}{514}a^{5}+\frac{6925}{514}a^{4}+\frac{6151}{514}a^{3}-\frac{1514}{257}a^{2}-\frac{1731}{1028}a+\frac{1061}{1028}$, $\frac{461}{1028}a^{15}+\frac{783}{1028}a^{14}-\frac{1779}{514}a^{13}-\frac{2977}{514}a^{12}+\frac{4595}{1028}a^{11}+\frac{7043}{1028}a^{10}-\frac{726}{257}a^{9}-\frac{1703}{514}a^{8}+\frac{19129}{1028}a^{7}+\frac{30907}{1028}a^{6}-\frac{13813}{514}a^{5}-\frac{21947}{514}a^{4}+\frac{10531}{1028}a^{3}+\frac{10839}{1028}a^{2}-\frac{768}{257}a-\frac{559}{514}$, $\frac{1621}{1028}a^{15}-\frac{95}{514}a^{14}-\frac{12769}{1028}a^{13}+\frac{1409}{1028}a^{12}+\frac{8909}{514}a^{11}-\frac{1561}{1028}a^{10}-\frac{10301}{1028}a^{9}+\frac{1329}{1028}a^{8}+\frac{66383}{1028}a^{7}-\frac{1925}{257}a^{6}-\frac{108255}{1028}a^{5}+\frac{9655}{1028}a^{4}+\frac{10595}{257}a^{3}-\frac{5467}{1028}a^{2}-\frac{5347}{1028}a+\frac{1939}{1028}$, $\frac{1621}{1028}a^{15}+\frac{95}{514}a^{14}-\frac{12769}{1028}a^{13}-\frac{1409}{1028}a^{12}+\frac{8909}{514}a^{11}+\frac{1561}{1028}a^{10}-\frac{10301}{1028}a^{9}-\frac{1329}{1028}a^{8}+\frac{66383}{1028}a^{7}+\frac{1925}{257}a^{6}-\frac{108255}{1028}a^{5}-\frac{9655}{1028}a^{4}+\frac{10595}{257}a^{3}+\frac{5467}{1028}a^{2}-\frac{5347}{1028}a-\frac{1939}{1028}$
|
| |
| Regulator: | \( 13514.1847612 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 13514.1847612 \cdot 1}{2\cdot\sqrt{73786976294838206464}}\cr\approx \mathstrut & 0.313855279363 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.2.1024.1, 4.2.2048.1, 8.4.2147483648.1, \(\Q(\zeta_{32})^+\), 8.4.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.0.73786976294838206464.5 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.265 | $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ | $16$ | $1$ | $66$ | $C_2^2 : C_8$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |