Normalized defining polynomial
\( x^{16} - 24x^{14} + 108x^{12} - 216x^{10} + 3402x^{8} - 17496x^{6} + 26244x^{4} - 17496x^{2} + 6561 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[8, 4]$ |
| |
| Discriminant: |
\(484116351470433472610304\)
\(\medspace = 2^{66}\cdot 3^{8}\)
|
| |
| Root discriminant: | \(30.22\) |
| |
| Galois root discriminant: | $2^{67/16}3^{1/2}\approx 31.559036391689393$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{9}a^{4}$, $\frac{1}{9}a^{5}$, $\frac{1}{27}a^{6}$, $\frac{1}{27}a^{7}$, $\frac{1}{162}a^{8}-\frac{1}{2}$, $\frac{1}{324}a^{9}-\frac{1}{324}a^{8}-\frac{1}{54}a^{7}-\frac{1}{54}a^{6}-\frac{1}{18}a^{5}-\frac{1}{18}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{972}a^{10}-\frac{1}{324}a^{8}+\frac{1}{12}a^{2}-\frac{1}{4}$, $\frac{1}{972}a^{11}-\frac{1}{324}a^{8}-\frac{1}{54}a^{7}-\frac{1}{54}a^{6}-\frac{1}{18}a^{5}-\frac{1}{18}a^{4}-\frac{1}{12}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{2916}a^{12}-\frac{1}{324}a^{8}+\frac{1}{36}a^{4}-\frac{1}{4}$, $\frac{1}{2916}a^{13}-\frac{1}{324}a^{8}-\frac{1}{54}a^{7}-\frac{1}{54}a^{6}-\frac{1}{36}a^{5}-\frac{1}{18}a^{4}-\frac{1}{6}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{2248236}a^{14}-\frac{25}{749412}a^{12}-\frac{77}{249804}a^{10}-\frac{241}{83268}a^{8}-\frac{487}{27756}a^{6}-\frac{17}{9252}a^{4}-\frac{63}{1028}a^{2}-\frac{393}{1028}$, $\frac{1}{2248236}a^{15}-\frac{25}{749412}a^{13}-\frac{77}{249804}a^{11}+\frac{4}{20817}a^{9}-\frac{1}{324}a^{8}+\frac{1}{1028}a^{7}-\frac{1}{54}a^{6}+\frac{497}{9252}a^{5}-\frac{1}{18}a^{4}+\frac{325}{3084}a^{3}-\frac{1}{6}a^{2}+\frac{189}{514}a+\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{140}{562059}a^{14}-\frac{499}{83268}a^{12}+\frac{1123}{41634}a^{10}-\frac{4147}{83268}a^{8}+\frac{5836}{6939}a^{6}-\frac{40103}{9252}a^{4}+\frac{9017}{1542}a^{2}-\frac{2915}{1028}$, $\frac{19}{62451}a^{14}-\frac{5021}{749412}a^{12}+\frac{1225}{62451}a^{10}-\frac{721}{27756}a^{8}+\frac{6673}{6939}a^{6}-\frac{31417}{9252}a^{4}+\frac{278}{257}a^{2}-\frac{247}{1028}$, $\frac{311}{1124118}a^{14}+\frac{1189}{187353}a^{12}-\frac{5819}{249804}a^{10}+\frac{3155}{83268}a^{8}-\frac{12509}{13878}a^{6}+\frac{2980}{771}a^{4}-\frac{10171}{3084}a^{2}+\frac{1067}{1028}$, $\frac{40}{562059}a^{14}-\frac{715}{374706}a^{12}+\frac{2843}{249804}a^{10}-\frac{1295}{83268}a^{8}+\frac{617}{2313}a^{6}-\frac{8299}{4626}a^{4}+\frac{6511}{3084}a^{2}-\frac{943}{1028}$, $\frac{479}{2248236}a^{14}-\frac{3751}{749412}a^{12}+\frac{65}{3084}a^{10}-\frac{3901}{83268}a^{8}+\frac{19615}{27756}a^{6}-\frac{31787}{9252}a^{4}+\frac{5803}{1028}a^{2}-\frac{2693}{1028}$, $\frac{1}{2187}a^{15}+\frac{5}{20817}a^{14}+\frac{8}{729}a^{13}-\frac{118}{20817}a^{12}-\frac{4}{81}a^{11}+\frac{5965}{249804}a^{10}+\frac{8}{81}a^{9}-\frac{3953}{83268}a^{8}-\frac{14}{9}a^{7}+\frac{5701}{6939}a^{6}+8a^{5}-\frac{8977}{2313}a^{4}-12a^{3}+\frac{5815}{1028}a^{2}+8a-\frac{5849}{1028}$, $\frac{140}{562059}a^{15}-\frac{5}{124902}a^{14}-\frac{499}{83268}a^{13}+\frac{59}{62451}a^{12}+\frac{1123}{41634}a^{11}-\frac{1037}{249804}a^{10}-\frac{4147}{83268}a^{9}+\frac{97}{9252}a^{8}+\frac{5836}{6939}a^{7}-\frac{1729}{13878}a^{6}-\frac{40103}{9252}a^{5}+\frac{171}{257}a^{4}+\frac{9017}{1542}a^{3}-\frac{1783}{1028}a^{2}-\frac{2915}{1028}a+\frac{1189}{1028}$, $\frac{311}{1124118}a^{14}-\frac{1189}{187353}a^{12}+\frac{5819}{249804}a^{10}-\frac{3155}{83268}a^{8}+\frac{12509}{13878}a^{6}-\frac{2980}{771}a^{4}+\frac{3733}{1028}a^{2}+a-\frac{1067}{1028}$, $\frac{1261}{2248236}a^{15}-\frac{17}{62451}a^{14}-\frac{9937}{749412}a^{13}+\frac{751}{124902}a^{12}+\frac{13927}{249804}a^{11}-\frac{1511}{83268}a^{10}-\frac{8351}{83268}a^{9}+\frac{2287}{83268}a^{8}+\frac{52037}{27756}a^{7}-\frac{5930}{6939}a^{6}-\frac{84145}{9252}a^{5}+\frac{14711}{4626}a^{4}+\frac{35119}{3084}a^{3}-\frac{4865}{3084}a^{2}-\frac{5731}{1028}a+\frac{735}{1028}$, $\frac{697}{1124118}a^{15}-\frac{1783}{2248236}a^{14}+\frac{11}{771}a^{13}+\frac{13735}{749412}a^{12}-\frac{13195}{249804}a^{11}-\frac{17423}{249804}a^{10}+\frac{6737}{83268}a^{9}+\frac{1085}{9252}a^{8}-\frac{3119}{1542}a^{7}-\frac{72299}{27756}a^{6}+\frac{6815}{771}a^{5}+\frac{107411}{9252}a^{4}-\frac{7525}{1028}a^{3}-\frac{35663}{3084}a^{2}+\frac{2745}{1028}a+\frac{5277}{1028}$, $\frac{2}{62451}a^{15}+\frac{463}{2248236}a^{14}+\frac{515}{749412}a^{13}-\frac{902}{187353}a^{12}-\frac{367}{249804}a^{11}+\frac{29}{1542}a^{10}-\frac{31}{20817}a^{9}-\frac{2101}{83268}a^{8}-\frac{743}{6939}a^{7}+\frac{19183}{27756}a^{6}+\frac{665}{3084}a^{5}-\frac{7172}{2313}a^{4}+\frac{1529}{3084}a^{3}+\frac{4691}{1542}a^{2}+\frac{135}{257}a-\frac{1545}{1028}$
|
| |
| Regulator: | \( 983030.5219427672 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 983030.5219427672 \cdot 1}{2\cdot\sqrt{484116351470433472610304}}\cr\approx \mathstrut & 0.281852291251777 \end{aligned}\] (assuming GRH)
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.2.1024.1, 4.2.2048.1, 8.4.173946175488.1, 8.8.173946175488.1, 8.4.67108864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | 16.0.484116351470433472610304.300 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.268 | $x^{16} + 16 x^{15} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ | $16$ | $1$ | $66$ | $C_2^2 : C_8$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
|
\(3\)
| 3.4.2.4a1.1 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 3 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ |
| 3.4.2.4a1.1 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 3 x + 4$ | $2$ | $4$ | $4$ | $C_8$ | $$[\ ]_{2}^{4}$$ |